
Ray Tracing using HIP

ATSUSHI YOSHIMURA, Advanced Micro Devices, Inc., Japan
KENTA ETO, Advanced Micro Devices, Inc., Japan
DANIEL MEISTER, Advanced Micro Devices, Inc., Japan
TAKAHIRO HARADA, Advanced Micro Devices, Inc., USA

1 INTRODUCTION
Ray tracing [1] is an essential and widely used technique in computer graphics. There are many
applications using ray tracing, and one of the most popular and exciting use cases is photorealistic
rendering. Please, take a look at Figure 1. Which picture do you think is a photograph? One of them
is rendered by ray tracing (left), and the other is a photograph taken by a physical camera (right).
The rendered image is practically indistinguishable from the photograph. This demonstrates how
powerful ray tracing is. Light phenomena are described by the physical laws of optics, which are
very complex in general. In computer graphics, we use a simplified model described by geometrical
optics, modeling light propagation in terms of rays (i.e., straight lines). Even with this simplified
model, we are able to render numerous lighting effects such as soft shadows, color bleeding,
reflection/refraction, and depth-of-field (Figure 2) in a single unified framework.
In this technical report, we introduce the basics of ray tracing and explain how to accelerate

the computation of the rendering algorithm in HIP. We also show how to use a HIP ray tracing
framework - HIPRT, leveraging hardware ray tracing features of AMD GPUs. We conclude this
technical report with a list of references for further reading.

2 OROCHI
The natural way to implement a HIP application accelerated by the GPU is to use the HIP SDK
or ROCm. A drawback of using vanilla HIP is that the host code is compiled either for AMD or
NVIDIA backends, requiring recompilation each time we switch to a GPU of the other vendor. In
this section, we introduce Orochi, an open-source library that allows to switch backends of different
vendors at runtime [2]. Orochi is a wrapper built on top of the HIP API, loading HIP API functions
directly from the driver libraries (dll files on Windows or so files on Linux), and thus it does not
require the HIP SDK installed. Orochi API is designed such that developers who are familiar with
HIP or CUDA APIs can use it easily. We use hip prefix for the HIP API while Orochi uses oro prefix
for the Orochi API. What it does is simply redirect the function to the appropriate API underneath.
Listing 1 shows a sample code, initializing a GPU device and Orochi context. Listing 2 shows how
this code is transformed to the Orochi API.

email: { Atsushi.Yoshimura, Kenta.Eto, Daniel.Meister, Takahiro.Harada }@amd.com
Advanced Micro Devices, Inc. Technical Report No. 26-01-4793. v.1, January 10, 2026.

1

Ray Tracing using HIP, Yoshimura et al.

Fig. 1. Ray tracing or photo?

Fig. 2. Examples of lighting effects that can be observed in the real world, produced by a ray-tracing-based
renderer: soft shadows (top-left), color bleeding (top-right), reflection/refraction (bottom-left), and depth-of-
field (bottom-right).

Listing 1. A HIP sample code.

1 #include <hip/hip_runtime.h>
2 hipInit (0);
3 hipDevice device;
4 hipDeviceGet (&device , 0);
5 hipCtx ctx;
6 hipCtxCreate (&ctx , 0, device);

Listing 2. An Orochi sample code.

1 #include <Orochi/Orochi.h>
2 oroInitialize(ORO_API_HIP , 0);
3 oroInit (0);
4 oroDevice device;
5 oroDeviceGet (&device , 0);
6 oroCtx ctx;
7 oroCtxCreate (&ctx , 0, device);

Most of the code in the above example is the same except for the API prefix. Only addition to the
code is line 2 in Listing 2 of the program where we call oroInitialize(). We pass ORO_API_HIP
to the function, which tells the library to load the HIP API from the driver libraries. If we want to
use an NVIDIA GPU, we need to pass ORO_API_CUDA instead. We can change the code path from
HIP to CUDA without recompiling the application, allowing for dynamic switching between AMD
GPU and NVIDIA GPU in runtime. We can also use both AMD and NVIDIA GPUs by initializing
Orochi with both keys (ORO_API_HIP | ORO_API_CUDA). If the system has two GPUs, one AMD

2

Ray Tracing using HIP, Yoshimura et al.

and one NVIDIA, Orochi loads both APIs, allowing us to use both devices at the same time in a
single application. Listing 3 shows a sample code that loads the HIP and CUDA APIs on the first
line, counts the number of AMD and NVIDIA devices, and prints the name and architecture of each
GPU. The full source code of this and other examples can be found in the Orochi repository on
GPUOpen[2].

Listing 3. Querying device count and printing a device name and architecture of each device.

1 oroInitialize(static_cast <oroApi >(ORO_API_CUDA | ORO_API_HIP), 0);
2 oroInit (0);
3 int nDevicesTotal;
4 oroGetDeviceCount (& nDevicesTotal);
5 int nAMDDevices;
6 oroGetDeviceCount (& nAMDDevices , ORO_API_HIP);
7 int nNVIDIADevices;
8 oroGetDeviceCount (& nNVIDIADevices , ORO_API_CUDA);
9 std::cout << "# of devices: " << nDevicesTotal << std::endl;
10 std::cout << "# of AMD devices: " << nAMDDevices << std::endl;
11 std::cout << "# of NV devices: " << nNVIDIADevices << std::endl;
12 for(int i = 0; i < nDevicesTotal; i++)
13 {
14 oroDevice device;
15 oroDeviceGet (&device , i);
16 oroDeviceProp props;
17 oroGetDeviceProperties (&props , device);
18 std::cout << "Device name and architecture: " << props.name << " (" << props.

gcnArchName << ")" << std::endl;
19 }

3 RENDERING TRIANGLES
We use rays as a straight line to mimic physical light behavior in the real world. As light bounces
around multiple times until they absorbed in the scene’s surface, we have to cast a lot of rays for
the light simulation. Also, triangles are commonly used primitives to represent the geometry of the
scene. So, we will start with rendering with triangles using ray casting in this section.
Recent AMD Radeon HIP-compatible GPUs since RDNA2 has the capability to accelerate the

ray intersections; however, developers have to use device-specific low-level APIs and design the
algorithm carefully to achieve maximum ray tracing performance. Thus, we generally recommend
using the HIPRT SDK, which we introduce later in this technical report. Although using such a
vendor-provided SDK is often the optimal choice for most user applications in terms of performance,
numerical robustness, and ease of implementation, use of the SDK as a black box may end up with
inefficient usage or make debugging harder. Thus, we first explain ray tracing without using these
APIs so readers can understand the algorithms behind these APIs, so that we believe this helps
readers to use the APIs properly, understand the limitations.

3.1 Ray-Triangle Intersection
The intersection of a ray and a triangle can be split into two steps. The first step is to find the
intersection with a plane that the triangle belongs to, and the second step is to check whether the
point is inside the triangle. Let us describe a ray as a parametric equation:

R(𝑡) = o + 𝑡d, (1)

where 𝑡 is a parameter (i.e., distance) of the ray, o is a ray origin, d is a ray direction. Given triangle
vertices (v0, v1, v2), the normal of the triangle n, we can describe the problem by the following

3

Ray Tracing using HIP, Yoshimura et al.

Plane

Ray

𝑹 𝒕

Fig. 3. To find the intersection with the plane of the triangle, we are looking for a value of t such 𝑡 that
R(𝑡) − v0 is perpendicular to the normal of the triangle.

equation:
n · (R(𝑡) − v0) = 0. (2)

The intersection points is inside the triangle plane, and thus the vector R(𝑡) − v0 belongs to the
plane as well. The dot product corresponds to a cosine of the angle between two vectors. If the the
dot product is zero, two vectors are perpendicular. To satisfy the equality, point R(𝑡) must lie on
the plane, and thus it is the intersection point. Figure 3 illustrates the geometric interpretation of
this equation. By plugging Equation 1 into Equation 2, we can explicitly express parameter 𝑡 that
satisfy the condition:

𝑡 =
n · (v0 − o)

n · d . (3)

Since we already know the hit point R(𝑡) in the plane, we can check if the point is inside the
triangle. This test can be described as three edge tests as follows:

0 ≤ n · ((v1 − v0) × (R(𝑡) − v0)),
0 ≤ n · ((v2 − v1) × (R(𝑡) − v1)),
0 ≤ n · ((v0 − v2) × (R(𝑡) − v2)),

(4)

where × denotes the cross product of three-dimensional vectors and n = (v1 − v0) × (v2 − v1).
Figure 4 shows one of the edge tests. Listing 4 shows an implementation of the intersection test.

Listing 4. Ray-triangle intersection algorithm.

1 __device__ bool intersectRayTriangle(float& tOut , const float3& rayOrigin , const
float3& rayDirection , const float3& v0, const float3& v1, const float3& v2)

2 {
3 const float3 e0 = v1 - v0;
4 const float3 e1 = v2 - v1;
5 const float3 e2 = v0 - v2;
6 const float3 n = cross(e0, e1);
7 const float t = dot(v0 - rayOrigin , n) / dot(n, rayDirection);
8 if (MIN_T <= t && t <= MAX_T)
9 {
10 const float3 p = rayOrigin + rayDirection * t;

4

Ray Tracing using HIP, Yoshimura et al.

11 const float a = dot(n, cross(e0, p - v0));
12 const float b = dot(n, cross(e1, p - v1));
13 const float c = dot(n, cross(e2, p - v2));
14 if (a < 0.0f || b < 0.0f || c < 0.0f)
15 return false;
16 tOut = t;
17 return true;
18 }
19 return false;
20 }

3.2 Camera Model
To render an image, we have to simulate how a real-world camera works. The simplest camera
system is a pinhole camera: a box with a small hole on one of the sides and a film on the opposite
side in the box. The small hole can work as a lens, such that the light coming from the outside is
projected onto the film, forming an image. Figure 5 illustrates how a pinhole camera works.

In computer graphics, we often use an even simpler model of the real pinhole camera. A virtual
film is placed in front of the lens, and the film is split into pixels (see Figure 6a). In this model, we
shoot a ray from the lens through a pixel into the virtual scene, and find an intersection with the
ray in order to calculate the color of the pixel. We introduce a parameterization in Figure 6b, where
the lens location is as the origin, the size of the film as the up and right vectors, and the forward
direction is implicitly represented as the cross product of the up and right vectors. Note that the
distance from the origin and the virtual film is 1. Listing 5 shows how to generate a camera ray
given camera parameters.

Fig. 4. The left image shows that the hit point is inside with respect to the edge v2, v1, which can be
conditioned by 0 ≤ n · ((v2 −v1) × (R(𝑡) −v1)) while the right shows the hit point is outside against the edge.

5

Ray Tracing using HIP, Yoshimura et al.

Listing 5. Generating a camera (primary) ray passing throught a pixel on the virtual screen; u and v are
normalized coordinate on the screen.

1 struct RayGenerator
2 {
3 float3 m_origin;
4 float3 m_right;
5 float3 m_up;
6 __device__ void getPrimaryRay(float3& ro, float3& rd, float u, float v)
7 {
8 float3 from = m_origin;
9 float3 forward = normalize(cross(m_up , m_right));
10 float3 to = m_origin + forward + lerp(-m_right , m_right , u) +
11 lerp(m_up , -m_up , v);
12 ro = from;
13 rd = normalize(to - from);
14 }
15 };

film

Fig. 5. Illustration of pinhole camera: light rays pass through the pinhole, projecting on the film on the
opposite side.

6

Ray Tracing using HIP, Yoshimura et al.

A virtual film

a rayA pixelA virtual lens

(a) A simplified pinhole camera model

Origin
Forward

Right

Up
1

(b) A parameterization of the camera

Fig. 6. Pinhole camera model commonly used in computer graphics.

3.3 Rendering Triangles
Each such ray passing through a pixel can be processed independently, and thus multiple rays can
be processed in parallel, which makes it suitable to execute on the GPU. Listing 6 shows a HIP
implementation of rendering a single triangle.

Listing 6. Rendering a single triangle using ray tracing.

1 __global__ void RenderTriangleKernel(uint8_t* pixels , RayGenerator rayGen , const
int width , const int height , const float3 v0, const float3 v1, const float3 v2
)

2 {
3 const int tid = threadIdx.x + blockDim.x * blockIdx.x;
4 if (width * height <= tid) { return; }
5 const int xi = tid % width;
6 const int yi = tid / width;
7 float3 rayOrigin , rayDirection;
8 rayGen.getPrimaryRay(rayOrigin , rayDirection ,
9 static_cast <float >(xi) / width , static_cast <float >(yi) / height);
10 const int pixelIdx = xi + (height - yi - 1) * width;
11 float t;
12 bool hit = intersectRayTriangle(t, rayOrigin , rayOrigin , v0, v1, v2);
13 pixels[pixelIdx * 4 + 0] = (hit)?R_triangle :32;
14 pixels[pixelIdx * 4 + 1] = (hit)?G_triangle :32;
15 pixels[pixelIdx * 4 + 2] = (hit)?B_triangle :32;
16 pixels[pixelIdx * 4 + 3] = 255;
17 }

The code in Listing 6 renders of a single triangle; nonetheless, scenes typically consist of many
triangles. Since light hit the closest surface along the ray, we do not see objects behind of other
(opaque) objects, and thus, we need to find the closest hit point among the triangles to simulate
the light behavior. Listing 7 shows an implementation of a naïve linear search, rendering multiple
triangles. Figure 7a shows an image rendered by ray tracing using the closes hit.

Listing 7. Rendering multiple triangles using ray tracing.

1 // Generate camera rays , etc.
2 ...
3 float minT = FLT_MAX;
4 int triIdx = -1;
5 for (int i = 0; i < triangles.size(); i++)
6 {

7

Ray Tracing using HIP, Yoshimura et al.

7 Triangle tri = triangles[i];
8 float t;
9 if (intersectRayTriangle(t, rayOrigin ,
10 rayDirection , tri.vtx[0], tri.vtx[1], tri.vtx [2]))
11 {
12 if (t < minT)
13 {
14 triIdx = i; minT = t;
15 }
16 }
17 }
18 // Store the results.
19 ...
20 }

3.4 Bonus: Lens Distortion
A pinhole camera cannot model a real-world camera perfectly due to the shape and curvature of
the lens, causing radial distortion (e.g., straight lines are not perfectly straight). We can model a
simple radial distortion as a mapping from a distorted location on the virtual film to a non-distorted
space, where we can trace the corresponding ray as with a standard pinhole camera. We model
the mapping as p𝑛𝑜𝑛−𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 =

p𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑
1+𝑐 , where 𝑐 is a coefficient proportional to the squared

distance from the center of the screen 𝑐 = 𝑑 ∥p𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 ∥2, where 𝑑 is a distortion parameter. The
implementation is shown in Listing 8 and the rendered result is depicted in Figure 7b.

Listing 8. Primary rays taking into account radial distortion of the lens.

1 struct RayGenerator
2 {
3 float3 m_origin;
4 float3 m_right;
5 float3 m_up;
6 __device__ void getPrimaryRay(float3& ro, float3& rd, float u, float v)
7 {
8 float3 from = m_origin;
9 float3 forward = normalize(cross(m_up , m_right));
10
11 float3 X = lerp(-m_right , m_right , u);
12 float3 Y = lerp(m_up , -m_up , v);
13 float3 p_distorted = X + Y;
14 float r2 = dot(p_distorted , p_distorted);
15 float d = -0.5f;
16 float c = d * r2;
17 float3 to = m_origin + forward + (X + Y) / (1.0f + c);
18 ro = from;
19 rd = normalize(to - from);
20 }
21 };

8

Ray Tracing using HIP, Yoshimura et al.

(a) A pinhole camera (b) A pinhole camera with radial distortion

Fig. 7. Cornell box rendered by ray tracing using the pinhole camera model and the camera model with radial
distortion.

4 AMBIENT OCCLUSION
In the previous section, only the visibility from the camera is taken into account in the rendering.
Since simulating full light transport is complex, let us start with a simple effect known as ambient
occlusion, approximating indirect lighting by relative occlusion by geometry in a proximity of the
shading point. Note that indirect lighting is lighting that does not come directly from a light source,
reaching the shading points indirectly through surface interactions (e.g., refraction or transmission).
The occlusion can be measured by shooting rays from the shading point. Figure 8 shows an example
of ambient occlusion calculation with a limited number of rays.

4.1 Cosine Law and Cosine-Weighted Sampling
In reality, incoming light does not illuminate the shading point equally from all directions. The
amount of light reaching the shading point is proportional to the cosine of the angle between the
direction and the normal. This is known as Lambert’s cosine law, which is illustrated in Figure 9. To
take this into account, we need not only to multiply the relative occlusion by the cosine, but also to
normalize the result by 𝜋 such that a completely unoccluded shading point corresponds to 1.

A common practice is to sample directions randomly, unlike uniform intervals in Figure 8. This
is because such a regular sampling pattern produces visually disturbing correlated patterns in the
rendered images. Due to the cosine term, it is beneficial to sample the direction according to a
distribution proportional to the cosine of the angle instead of a uniformly distributed direction
(we will discuss this in more detail in Section 5). One of the simplest ways to realize this is
to project a uniform distribution in a circle to a hemisphere. This works because of the area
relationship between the circle and the hemisphere as shown in Figure 10, where the relationship
between a small area on the hemisphere Δ𝐴 and its projection Δ𝐴⊥ on the bottom circle can
be described as Δ𝐴⊥ = Δ𝐴 cos𝜃 . As the area on the circle is stretched by 1

cos𝜃 projecting to the
hemisphere, the density of the distribution on the hemisphere is scaled by cos𝜃 . Changing the
distribution using geometric relationships is often used to achieve the desired distribution (i.e.,

9

Ray Tracing using HIP, Yoshimura et al.

occlusion from the
geometry around

ambient occlusion

Fig. 8. An illustration how the incoming light is occluded by the geometry in the proximity of the shading
point.

place samples proportional to the cosine value). For uniform distribution on a circle, we can use
𝜙 = 2𝜋𝜉0, 𝑟 =

√︁
𝜉1 in the polar coordinate system, where 𝜉0, 𝜉1 are uniform random numbers

in [0, 1], and 𝑥 = 𝑟 cos𝜙, 𝑧 = 𝑟 sin𝜙 . The square root here works as a cancellation of the radial
compression introduced by the variable transformation from a unit square to a unit circle. Listing 9
shows an implementation of the cosine-weighted sampling. Since the hemisphere used in the
implementation is centered around Y axis, we need to transform the the coordinates system of the
shading point. We need to compute a basis of the coordinate system for the the transformation
consisting of three vectors: normal, tangent, and bi-tangent. We have a normal vector, the tangent
cane be pre-calculated by modeling software, but we can also use any of two vertices of the triangle,
and the bi-tangent can be computed as a cross product of the normal and tangent vectors.

4.2 Practical Consideration
By using the cosine-weighted hemisphere sampling described above, Listing 10 shows the example
code for the ambient occlusion calculation, and the result is shown in Figure 11a. Note that we
add a small offset to the ray origin based on the normal at the point to avoid self-intersection
with the base triangle. Ambient occlusion does not strictly follow physical light behavior and
ignores multiple-bounce lighting effects, but it is far more interesting than the image we rendered
in Figure 7a and it resembles real-world occlusion. As it can be precomputed and baked into a
texture, it has been used as a cheap approximation of shadows in real-time applications. In addition,
ambient occlusion can be used for arbitrary non-photorealistic rendering. For example, Figure 11b
shows a simple false color rendering by mapping the ambient occlusion value into a color table.

We used ray tracing to find the closest hit along the ray, considering any intersection along the
ray. In practise, we limit the length of a ray from the shading point to control the locality of the
ambient occlusion. Thus, we do not need to test triangles behind the second point, and we can
also stop immediately after finding first intersection (not necessarily the closest one) as we are
interested only in occlusion. Ray tracing frameworks such as HIPRT support the maximum ray

10

Ray Tracing using HIP, Yoshimura et al.

The density gets smaller due to light stretch

θ

Fig. 9. An illustration of Lambert’s cosine law: the incoming light is attenuated by the cosine term as the
density of photons is smaller with larger angles.

1. Sample uniform in a circle 2. Project to the hemisphere

Fig. 10. An illustration of cosine-weighted sampling: we first uniformly sample points in the circle, and then
project them to the hemisphere to get the random directions.

length and provide optimized any-hit kernels that can be used for such tests. Figure 12 shows the
effect of the ray length in ambient occlusion.

Listing 9. Cosine-weighted hemisphere sampling.

1 float3 sampleHemisphere(float xi_0 , float xi_1)
2 {
3 float phi = xi_0 * 2.0f * PI;
4 float r = sqrtf(xi_1);
5 // uniform in a circle
6 float x = cosf(phi) * r;
7 float z = sinf(phi) * r;
8 // project to a hemisphere
9 float y = sqrtf(fmax (1.0f - r * r, 0.0f));
10 return {x, y, z};
11 }

Listing 10. Calculation of ambient occlusion.

11

Ray Tracing using HIP, Yoshimura et al.

1 const float3 p = rayOrigin + rayDirection * t;
2 const float3 aoRayOrigin = p + n * 0.0001f;
3 constexpr int N_RAYS = 1024;
4 int nOcclusions = 0;
5 for (int i = 0; i < N_RAYS; i++)
6 {
7 float3 s = sampleHemisphere(random.uniformf (), random.uniformf ());
8 // The hemisphere is Y-up. Transform the Y axis to the normal
9 float3 aoRayDirection = tangent0 * s.x + tangent1 * s.z + n * s.y;
10 Intersection aoIsect;
11 if (closesetHit(aoIsect , aoRayOrigin , aoRayDirection , triangles))
12 {
13 nOcclusions ++;
14 }
15 }
16 const float ao = static_cast <float >(nOcclusions) / N_RAYS;

(a) Ambient occlusion in grayscale (b) A false-color rendering of ambient occlusion
with a gradient look-up table.

Fig. 11. Visualizations of Ambient Occlusion.

12

Ray Tracing using HIP, Yoshimura et al.

(a) 0.1 (b) 0.3 (c) 2.0

Fig. 12. Ambient Occlusion with different ray lengths.

5 PATH TRACING
Path tracing [3] is one of the most popular techniques to render photorealistic images. It is used
in a wide range of applications, from offline movie production to real-time rendering in games.
Producing a photorealistic image means simulating how light behaves in the real world. In path
tracing, we simulate the optical paths that come to the camera from light sources. This helps us
to compute how much light arrives at each pixel in the final image. In the real world, there are
infinitely many possible paths that light can take before it reaches the camera. Simulating all of
them is computationally impossible.

Sampled path

Fig. 13. A visualization of many light paths from a light source to the camera.

13

Ray Tracing using HIP, Yoshimura et al.

To address this, path tracing uses random sampling to generate a limited number of light paths
(Figure 13). This technique is called Monte Carlo ray tracing. By averaging the results of many
random paths, we can estimate the amount of light reaching each pixel. Ambient occlusion in the
previous section is one example of Monte Carlo ray tracing. Because the method relies on random
numbers, the resulting image contains noise. As we increase the number of samples (i.e., light paths),
the noise decreases, and the image becomes clearer (see Figure 14). In practical applications like
movies and games, reducing noise while keeping the computation time short is a major challenge.
Although we do not cover them in this section, many advanced techniques have been developed to
tackle this challenge. [3–6]

(a) 16 samples (b) 128 samples (c) 1024 samples

Fig. 14. A comparison of images with different sample counts.

5.1 Algorithm
In the real world, light travels from light sources to the camera. However, in path-tracing, we
construct light paths in the opposite direction - from the camera toward the light sources. The
reason for this is efficiency. If we trace paths from the light source, most of them would never reach
the camera. Starting from the camera, we only trace paths that contribute to the image.

We use ray-tracing to construct these paths. For each pixel, we first generate a ray that starts from
the camera and passes through the pixel. We trace this ray into the scene and find its intersection
with objects in the same manner as we did in the case of ambient occlusion. At the intersection
point, we randomly sample a new direction and generate a new ray from that point. This process
simulates reflection. We repeat this process, tracing the new ray, sampling a new direction, and so
on, until the ray eventually hits a light source. When a ray reaches a light source, we add the light
contribution to the pixel’s color. Figure 15 illustrates this algorithm.
In the real world, when light hits a surface, some of the energy is absorbed, and the rest is

reflected. To simulate this behavior, the path-tracing algorithm multiplies the reflectance of the
surface by the light emission. The accumulated product of the reflectance along the ray is called
throughput. When a ray reaches a light source, we multiply the ray’s throughput by the light
emission and accumulate it in the pixel.
Since there can be multiple bounces before hitting a light source, we need to take all of them

into account. We can denote the contribution for a single bounce case as 𝑅0 × 𝐸0, where 𝑅𝑖 is the
reflectance, 𝐸𝑖 is the light emission, and the subscripts are the number of bounces. Also, we can
write two-bounce case as 𝑅0 × 𝑅1 × 𝐸1. Thus, we can sum them up to get the total contribution 𝐿(𝑖)
for the number of bounces 𝑖 as follows:

𝐿(𝑖) =𝐸0 + (𝑅0 × 𝐸1) + (𝑅0 × 𝑅1 × 𝐸2) + . . . + (𝑅0 × 𝑅1 × ... × 𝑅𝑖−1 × 𝐸𝑖).
We can also simplify products of 𝑅 by throughput 𝑇𝑖 , the accumulated product of the reflectance

𝑇𝑖 = 𝑅0 × 𝑅1 × ... × 𝑅𝑖−1. Thus, we can simplify it as follows:

14

Ray Tracing using HIP, Yoshimura et al.

Virtual film

Fig. 15. Illustration of the path tracing algorithm.

𝐿(𝑖) =𝑇0 × 𝐸0 +𝑇1 × 𝐸1 +𝑇2 × 𝐸2 + . . .𝑇𝑖 × 𝐸𝑖 =

𝑖∑︁
𝑘=0

𝑇𝑘𝐸𝑘 .

This lead us to a simple for loop to solve the light contribution as shown below.

Listing 11. A high-level Path tracing algorithm.

1 float3 radiance = {0.0f, 0.0f, 0.0f};
2 float3 throughput = {1.0f, 1.0f, 1.0f};
3 for (int depth = 0; depth < options.maxDepth ; ++depth)
4 {
5 radiance += throughput * emissive(depth);
6 throughput *= reflectance(depth);
7 }

Listing 12 shows a complete example code of this algorithm, including ray tracing. Note that the
idea and the structure of the algorithm are the same as the code above.

Listing 12. Path tracing algorithm.

1 Ray ray = makeRay(ro, rd);
2 float3 radiance = {0.0f, 0.0f, 0.0f};
3 float3 throughput = {1.0f, 1.0f, 1.0f};
4 for (int depth = 0; depth < options.maxDepth; ++depth)
5 {
6 Intersection isect;
7 if (! raytrace(ray , hiprtGeom , isect))
8 {
9 // hit nothing
10 radiance += throughput * options.skyColor;
11 break;
12 }
13 Triangle hitTriangle = triangles[isect.index];
14 if (hasEmission(hitTriangle))
15 {
16 // hit light source
17 radiance += throughput * triangles[isect.index]. emissive;
18 break;
19 }

15

Ray Tracing using HIP, Yoshimura et al.

20 // Evaluate hit position and hit normal
21 SurfaceInfo surf = makeSurfaceInfo(ray , isect , triangles);
22 float3 wo;
23 {
24 TangentBasis basis =
25 makeTangentBasis(surf.n, isect.index , triangles);
26 // Sample next ray direction in tangent space
27 float3 woLocal = sampleHemisphere(
28 random.uniformf (), random.uniformf ());
29 // Transform direction from tangent space to world space
30 wo = localToWorld(wo_local , basis);
31 }
32 // Update throughput
33 throughput *= hitTriangle.color;
34 // Generate next ray
35 ray = makeRay(offsetRayPosition(surf.p, surf.n), wo);
36 }
37
38 // Write results to the accumulation buffer
39 accumulation[pixelIdx] += {radiance.x, radiance.y, radiance.z, 1.0f};

Figure 14 shows rendering results using path tracing with different sample counts. Fewer samples
result in noisier images. The amount of noise depends on how likely the randomly generated light
paths are to reach a light source. If most of the sampled paths miss the light source, the estimation
becomes highly variable, leading to visible noise. To reduce noise, it is important to sample light
paths that are more likely to reach the light source. This idea is known as importance sampling. In
the next section, we introduce one such importance sampling technique called Next event estimation.

5.2 Next Event Estimation
One of themain issues with basic path tracing is that rays are sampled randomlywithout considering
the positions of light sources. As a result, many sampled paths fail to reach any light source, leading
to an inefficient computation which results in high variance in the final image (Figure 16). Next
event estimation [3; 4] addresses this problem by explicitly taking the positions of light sources
into account during sampling.
At each surface intersection, next event estimation randomly selects one of the light sources

in the scene. Once a light source is selected, a point on the light source is sampled. Then, a ray is
generated to connect the intersection point and the sampled point on the light source. This ray

Fig. 16. Failure cases of basic path tracing.

16

Ray Tracing using HIP, Yoshimura et al.

Fig. 17. Next event estimation

is called a shadow ray. If a shadow ray is not blocked by any objects, we accumulate the light
contribution to the pixel. Whether a shadow ray is blocked or not is determined by ray tracing
(similarly to ambient occlusion). This is the basic idea behind the next event estimation algorithm.
Figure 17 illustrates this idea. Listing 13 is an example code of the next event estimation algorithm.

Listing 13. Next event estimation algorithm.

1 // ...
2 for (int depth = 0; depth < options.maxDepth; ++depth)
3 {
4 // raytrace
5 // ...
6 Triangle hitTriangle = triangles[isect.index];
7 if (hasEmission(hitTriangle))
8 {
9 // hit light source
10 if (depth == 0) {radiance += throughput * hitTriangle.emissive ;}
11 break;
12 }
13 // Evaluate hit position and hit normal
14 // ...
15 // Sample a position on the light source
16 LightSample lightSample =
17 sampleLight(triangles , lights , random.uniformf (),
18 random.uniformf (), random.uniformf ());
19 // Create a path between the hit position and the light source
20 {
21 Triangle lightTriangle = triangles[light_sample.index];
22 const float V =
23 checkVisibility(surf.p, surf.n, lightSample.p, hiprtGeom);
24 const float3 brdf = 1.0f / PI * hitTriangle.color;
25 const float G =
26 geometryTerm(surf.p, surf.n, lightSample.p, lightSample.n);
27 const float lightPdf =
28 1.0f / lights.size() * 1.0f / calculateArea(lightTriangle);
29 radiance +=
30 throughput * brdf * G * V * lightTriangle.emissive / lightPdf;
31 }
32 // Sample next ray direction
33 // ...
34 // Update throughput
35 // ...

17

Ray Tracing using HIP, Yoshimura et al.

36 // Generate next ray
37 // ...
38 }
39
40 // Write results to the accumulation buffer
41 // ...

The next event estimation algorithm is quite similar to basic path tracing, but there are a few
important differences. First, in Next event estimation, the contribution from rays that hit a light
source directly is not added — except when the ray is at depth 0. This is to avoid counting the same
light path twice. Second, the way we compute the contribution from the connection between the
surface point and the sampled point on the light is different. As shown in the code example, several
terms are multiplied with the light intensity, including the bidirectional reflectance distribution
function (BRDF), geometry term, and probability density function (PDF) of the sampled ray. These
terms are essential to make the estimation statistically unbiased. If we omit them, the rendered
result will differ from basic path tracing. Although detailed explanations of these terms are beyond
the scope of this book, we encourage interested readers to read [7] for more information. Figure 18
shows rendering results of Next event estimation. Compared to basic path tracing with the same
number of samples, the noise is significantly reduced. As this example demonstrates, designing
better methods to sample light paths is crucial for reducing noise in the rendered image.

(a) Path tracing (b) Next event estimation

Fig. 18. A comparison of Path tracing and Next event estimation in 16 samples.

6 BOUNDING VOLUME HIERARCHY (BVH)
In the previous sections, we tested all triangles sequentially (i.e., linear time complexity) to find the
intersections with a given ray. In practice, we deal with scenes of significantly higher complexity,
consisting of millions of triangles (or other geometric primitives). Testing all triangles in a linear
fashion becomes practically infeasible even on highly parallel GPUs already for scenes of moderate
complexity. Therefore, significant effort has been devoted to reducing the number of intersection
tests. The core idea is to arrange the triangles into spatial data structures that exploit the spatial
proximity of the triangles such that we can efficiently cull parts of the scene (e.g., a subset of
triangles) that are certainly not intersected. In this section, we focus on the bounding volume
hierarchy (BVH), one of the most widely adopted acceleration data structures in modern ray tracing
frameworks.

18

Ray Tracing using HIP, Yoshimura et al.

Sphere AABB OBB 8-DOP Convex hull

Intersection efficiency

Culling efficiency

Fig. 19. An example of commonly used bounding volumes for ray tracing, balancing trade-off between culling
efficiency (tightness) and the intersection efficiency: sphere, axis-aligned bounding box (AABB), oriented
bounding box (OBB), discrete oriented polytope (DOP), and convex hull.

6.1 Bounding Volumes
The idea is to enclose scene objects (or any subset of triangles) within simpler bounding volumes
that can be easily tested for an intersection. If a ray does not intersect the bounding volume, we
know that there is no intersection with the objects inside, and thus we do not need to test the
objects inside. There are various types of bounding volumes, typically balancing culling efficiency
(how tight the bounding volume is) and intersection efficiency (how quickly we can compute the
intersection). Tighter bounding volumes can better cull rays thanks to reduced empty space, but
the intersection test is typically more complex. For ray tracing, we use axis-aligned bounding boxes
(AABBs), defined by minimum and maximum points. For elongated diagonal triangles, it may be
beneficial to use oriented bounding boxes (represented as AABBs with additional rotation matrices)
(OBBs), which better fit these non-axis aligned shape.

6.2 Bounding Volume Hierarchy (BVH)
A drawback of bounding volumes is that if we hit a bounding volume, we still need to compute
intersections with all objects inside. Bounding volumes can be nested in a hierarchical manner to
form a rooted tree with bounding volumes in the internal nodes and triangles in the leaf nodes [8].
We can then find the intersection by traversing the hierarchy from the root, skipping the nodes
that are not intersected. While the logarithmic complexity is not guaranteed in general, depending
on how the tree is balanced, the complexity is significantly reduced in practice. Contemporary ray
tracing frameworks use wide trees with a maximum branching factor of 4 or 8.

BVH Construction. To be able to find the intersection, we need to construct the BVH first. There
are two main construction approaches: top-down (splitting) [9] and bottom-up (clustering) [10].
The former approach starts with all triangles, and recursively splits them into disjoint subsets until a
termination criterion (e.g., the number of triangles in a subset is less than a predefined threshold) is
satisfied. The latter approach considers each triangle as a cluster, then iteratively merges the clusters
until only one clusters remains, which corresponds to the root node. Notice that there are many
possible BVHs for a given scene or model. For example, there are many ways to split the triangles

19

Ray Tracing using HIP, Yoshimura et al.

Fig. 20. An example a simple bounding volume hierarchy (BVH) using axis-aligned bounding boxes (AABBs).
To find the closest intersection (the red cross), we need to test three AABBs and one triangle (the gray part is
culled off).

during the top-down construction or to merge the clusters during the bottom-up construction.
These local decisions have an impact on culling efficiency, which is inversely proportional to a cost
function defined as a sum of surface areas of the bounding volumes in the internal nodes. BVH
construction algorithms aim to minimize the surface areas and the construction times, preferring
one of these criteria depending on a particular application [8]. The construction speed is critical
for dynamic geometry, where once the underlying triangles change, the BVH becomes invalid,
and thus must be reconstructed. An alternative approach is to keep the topology of the BVH the
same and fit the bounding volumes to the current geometry, which can be done efficiently in a
bottom-up manner. Depending on the bounding volume type, we can compute new bounding
volumes simply from the child bounding volumes (e.g., for AABBs). A caveat is that the culling
efficiency may degrade if the geometry is very different than the original geometry for which the
BVH was initially constructed.

BVH Traversal. Once the BVH is constructed, it is relatively straightforward to use it to find the
intersections. To traverse the BVH, we typically employ a stack to store the nodes to be tested,
starting by pushing the root node onto the stack. In each step, we pop a node from the top of the
stack and test it, if the bounding volume of the node is intersected, we either push its children onto
the stack (in the case of an internal node), or test triangles inside (in the case of a leaf node). We
repeat this until the stack is empty. Using this procedure, we can find both the nearest intersection,
any intersection, or all intersections.

Two-Level Hierarchy and Instancing. In practice, it is beneficial to arrange the scene into two
levels [11], where the bottom level consists of BVHs of individual scene objects (bottom-level
acceleration structure - BLAS) and the top-level BVH (top-level acceleration structure - TLAS) is
built over these BVHs such that the leaf nodes of the top BVH contain references to the bottom level
BVHs and an affine transformation. There are two advantages of this approach. This approach allows
instancing of the bottom level objects. We reference the same bottom-level BVH multiple times in
the top-level BVH with different transformations (e.g., a classroom with multiple instances of desks
and chairs), which reduces the memory usage. Moreover, this approach enables rigid animations

20

Ray Tracing using HIP, Yoshimura et al.

by changing the transformations such that only the top-level BVH has to be reconstructed, which
significantly reduces the update time in real-time applications. A drawback is that the ray traversal
becomes more complicated. When we encounter an instance node during the traversal, we need to
transform the ray into the local object space using the inverse transformation.

7 HIPRT: HIP RAY TRACING API
While implementing a simple variant of BVH is relatively straightforward, optimizing the code
for high performance is very challenging. HIPRT [12] is an open-source ray tracing framework
written in HIP, implementing the BVH construction, traversal, and other essential features required
in modern renderers. HIPRT is optimized for AMD GPUs (including MI series), utilizing specialized
ray tracing hardware units on RDNA 2 and later architectures. In this technical report, we briefly
introduce the HIPRT API, illustrating how to build a two-level hierarchy on a simple example.

7.1 Context Initialization
Note that HIPRT performs all computation entirely on the GPU, and thus all input buffers in
the following code are supposed to be allocated on the device. We start with the HIPRT context
initialization and setting the logging level that may be helpful for debugging (see Listing 14).

Listing 14. Context initialization and log level setting.

1 #include <hiprt/hiprt.h>
2
3 hiprtContextCreationInput hiprtCtxInput;
4 hiprtCtxInput.deviceType = hiprtDeviceAMD;
5 hiprtCtxInput.ctxt = oroGetRawCtx(ctx);
6 hiprtCtxInput.device = oroGetRawDevice(device);
7
8 hiprtContext hiprtCtx;
9 hiprtCreateContext(HIPRT_API_VERSION , hiprtCtxInput , hiprtCtx);
10
11 hiprtSetLogLevel(hiprtLogLevelError | hiprtLogLevelWarn);

7.2 Geometry Construction
We build a bottom-level BVH for a triangle mesh. We first initialize the HIPRT triangle mesh,
geometry build input, and build options structures (see Listing 15). In the following example, we
assume indexed geometry with triangles defined in a consecutive array of uint3 structures and
vertices are stored in a consecutive array of float3 structures. In the build options, we can specify
the construction algorithm and a few other options. In this case, we use the balanced option that
provides very good culling efficiency and the build is still very fast (the other two options are fast
and high-quality).

Listing 15. Triangle mesh and geometry build input.

1 hiprtTriangleMeshPrimitive mesh {};
2 mesh.triangleCount = /* the number of triangles */;
3 mesh.triangleStride = sizeof(uint3);
4 mesh.triangleIndices = /* a device pointer to an array of uint3 */;
5 mesh.vertexCount = /* the number of vertices */;
6 mesh.vertexStride = sizeof(float3);
7 mesh.vertices = /* a device pointer to an array of float3 */;
8
9 hiprtGeometryBuildInput geomInput {};
10 geomInput.type = hiprtPrimitiveTypeTriangleMesh;

21

Ray Tracing using HIP, Yoshimura et al.

11 geomInput.primitive.triangleMesh = mesh;
12
13 hiprtBuildOptions options {};
14 options.buildFlags = hiprtBuildFlagBitPreferBalancedBuild;

The construction requires a temporary space for intermediate computations. Based on the mesh
size and other options, we query the size of this space and allocate the corresponding temporary
buffer on the device (see Listing 16). This buffer can be reused for construction of other BVHs or
any other computations on the user side.

Listing 16. Temporary buffer allocation.

1 size_t geomTempSize {};
2 hiprtGetGeometryBuildTemporaryBufferSize(hiprtCtx , geomInput , options ,

geomTempSize);
3
4 hiprtDevicePtr geomTempTris {};
5 oroMalloc(reinterpret_cast <oroDeviceptr *>(& geomTempTris), geomTempSize)

Last, we create and build the HIPRT geometry, which corresponds to the bottom-level BVH in
the HIPRT terminology (see Listing 17).

Listing 17. Geometry creation and construction.

1 hiprtGeometry geomTris {};
2 hiprtCreateGeometry(hiprtCtx , geomInput , options , geomTris);
3 hiprtBuildGeometry(hiprtCtx , hiprtBuildOperationBuild , geomInput , options ,

geomTempTris , 0 /* stream */, geomTris);

HIPRT supports custom geometric primitives such as spheres or curves. HIPRT is agnostic to a
particular type of the primitive, taking a list of AABBs of these primitives provided by a user as an
input (in contrast to the triangle mesh). In the example showed in Listing 18, we assume that each
AABB is represented as two float3 structures. The geometry type is a user defined value that will
be later used to set up the custom intersection functions. The rest of the BVH construction remains
the same as for triangles above.

Listing 18. AABB list and geometry build input.

1 hiprtAABBListPrimitive list {};
2 list.aabbCount = /* the number of custom primitives */;
3 list.aabbStride = 2 * sizeof(float3);
4 list.aabbs = /* a device pointer to an array of 2 * float3 */;;
5
6 hiprtGeometryBuildInput geomInput {};
7 geomInput.type = hiprtPrimitiveTypeAABBList;
8 geomInput.primitive.aabbList = list;
9 geomInput.geomType = 0;
10
11 hiprtDevicePtr geomTempCustoms {};
12 ...
13 hiprtGeometry geomCustoms {};
14 hiprtBuildGeometry(hiprtCtx , hiprtBuildOperationBuild , geomInput , options ,

geomTempCustoms , 0 /* stream */, geomCustoms);

22

Ray Tracing using HIP, Yoshimura et al.

7.3 Scene Contruction
With constructed HIPRT geometries, we can build HIPRT scene, which corresponds to the top-level
BVH. Similarly to geometries, we need to set up the scene build input, which takes an array of HIPRT
instances. In Listing 19, we define two instance objects, and we use them for actual instancing,
creating an array of the instance objects, where each object can be repeated arbitrary times.

Listing 19. Instance definition.

1 hiprtInstance instanceTris {};
2 instanceTris.type = hiprtInstanceTypeGeometry;
3 instanceTris.geometry = geomTris;
4
5 hiprtInstance instanceCustoms {};
6 instanceCustoms.type = hiprtInstanceTypeGeometry;
7 instanceCustoms.geometry = geomCustoms;
8
9 hiprtInstance instances [] = { instanceTris , instanceTris , ..., instanceCustoms ,

instanceCustoms };
10 constexpr size_t INSTANCE_COUNT = sizeof(instances) / sizeof(instances [0]);

Notice that we set the instance type. HIPRT supports multi-level instancing (i.e., instances
of instances). In this technical report, we limit ourselves to two-level hierarchy, and thus we
always use the geometry type. We also need to define transformation for each instance. In HIPRT,
the instance transformation can be specified as a transform matrix (hiprtFrameMatrix) or by
individual transformation components (hiprtFrameSRT). Listing 20 illustrates the latter case.

Listing 20. Instance tranformations - frames.

1 hiprtFrameSRT frames[INSTANCE_COUNT];
2 for (size_t i = 0; i < INSTANCE_COUNT; ++i)
3 {
4 hiprtFrameSRT& frame = frames[i];
5 frame.translation = /* translation component of the i-th frame */;
6 frame.scale = /* scale component of the i-th frame */;
7 frame.rotation = /* rotation component of the i-th frame */;
8 }

With the instances and transformations, we can finally set up the scene build input. In Listing 21,
we allocate the device buffers for the instances and transformation, and copy the data to the device.

Listing 21. Scene build input and instance data transfer to a device.

1 hiprtSceneBuildInput sceneInput {};
2 sceneInput.instanceCount = INSTANCE_COUNT;
3 sceneInput.frameCount = INSTANCE_COUNT;
4
5 oroMalloc(reinterpret_cast <oroDeviceptr *>(& sceneInput.instances), INSTANCE_COUNT *

sizeof(hiprtInstance));
6 oroMemcpyHtoD(reinterpret_cast <oroDeviceptr >(sceneInput.instances), instances ,

INSTANCE_COUNT * sizeof(hiprtInstance));
7
8 oroMalloc(reinterpret_cast <oroDeviceptr *>(& sceneInput.instanceFrames),

INSTANCE_COUNT * sizeof(hiprtFrameSRT));
9 oroMemcpyHtoD(reinterpret_cast <oroDeviceptr >(sceneInput.instanceFrames), frames ,

INSTANCE_COUNT * sizeof(hiprtFrameSRT));

Once the scene build input is set up, we allocate the temporary buffer for the construction. Finally,
we create and build the HIPRT scene (see Listing 22).

23

Ray Tracing using HIP, Yoshimura et al.

Listing 22. Scene creation and construction

1 size_t sceneTempSize {};
2 hiprtGetSceneBuildTemporaryBufferSize(hiprtCtx , sceneInput , options , sceneTempSize

);
3
4 hiprtDevicePtr sceneTemp {};
5 oroMalloc(reinterpret_cast <oroDeviceptr *>(& sceneTemp), sceneTempSize)
6
7 hiprtScene scene {};
8 hiprtCreateScene(hiprtCtx , sceneInput , options , scene);
9 hiprtBuildScene(hiprtCtx , hiprtBuildOperationBuild , sceneInput , options , sceneTemp

, 0 /* stream */, scene);

One could wonder why the frames are not stored in the same structure as instances. HIPRT
supports instance-based motion blur such that one instance may have a range of frames. The ranges
need to be specified as additional buffer in the scene build input (instanceTransformHeaders).

7.4 Custom Intersection
For the custom primitives, we need to set up the intersection function and also the data defining
the custom primitives that are passed to the intersection function. To pass the data, we need to
create the function table which is a 2D structure mapping a ray type and geometry type to the
corresponding data in the intersection function. An example of this is showed in Listing 23. We
assume a single ray type and geometry type, resulting in a single entry in the table.

Listing 23. Custom function table - initialization and data assignment.

1 hiprtFuncDataSet funcDataSet {};
2 funcDataSet.intersectFuncData = /* arbitrary device pointer */;
3
4 hiprtFuncTable funcTable {};
5 checkHiprt(hiprtCreateFuncTable(ctxt , 1 /* the number of geometry types */ , 1 /*

the number of ray types */, funcTable));
6 checkHiprt(hiprtSetFuncTable(ctxt , funcTable , 0 /* geometry type */, 0 /* ray type

*/, funcDataSet));

The intersection function must be a device function with the signature showed in Listing 24,
returning true in the case of intersection and false otherwise. The function takes a ray, the data
we specified in the previous step, an optional payload, and the resulting hit structure.

Listing 24. Signature of a custom intersection function.

1 __device__ bool intersectCustom(const hiprtRay& ray , const void* data , void*
payload , hiprtHit& hit) {...}

7.5 Traversal Stacks and Traversal Objects
Listing 25 shows how to use the constructed scene to find the intersections. We need to create a
traversal object that can be used to find the intersection. HIPRT allows to customize the traversal
stack. For high performance, we use the HIPRT global stack that combines local shared memory
and global memory as a fallback. The global stack buffer must be big enough to accommodate
stacks for all scheduled threads. Similarly, the shared memory buffer must be big enough for all
threads in the block.

Listing 25. Global traversal stack setup shared and global buffers.

1 __shared__ uint32_t sharedStackCache[SHARED_STACK_SIZE * BLOCK_SIZE];

24

Ray Tracing using HIP, Yoshimura et al.

2
3 hiprtSharedStackBuffer sharedStackBuffer {};
4 sharedStackBuffer.stackSize = SHARED_STACK_SIZE;
5 sharedStackBuffer.stackData = sharedStackCache;
6
7 hiprtGlobalStackBuffer globalStackBuffer {};
8 globalStackBuffer.stackSize = /* global buffer size */;
9 globalStackBuffer.stackData = /* global buffer pointer */;
10
11 hiprtGlobalStack stack(globalStackBuffer , sharedStackBuffer);
12 hiprtEmptyInstanceStack instanceStack;

There are two main types of traversal objects: for closest intersection and for any/all intersections.
Note that all intersections can be found by repeatedly calling getNextHit() on the traversal object.
We can check the state of the traversal by calling getCurrentState() on the traversal object,
which indicates whether all intersection have been found. The state of traversal is stored in the
stack buffers. For example, if we reuse the buffers in the closest traversal object, we invalidate this
state of the any-hit traversal object (as we did in the example above). An example of the traversal
objects and using them to find the intersection is depicted in Listing 26.

Listing 26. Using the traversal object to find the intersections.

1 hiprtRay ray {};
2 ray.origin = /* ray origin */
3 ray.direction = /* ray direction */
4 ray.minT = /* min ray length */ MIN_T;
5 ray.maxT = /* max ray length */ MAX_T;
6
7 hiprtSceneTraversalAnyHitCustomStack <hiprtGlobalStack , hiprtEmptyInstanceStack >

anyHitTr(scene , ray , stack , instanceStack , hiprtFullRayMask ,
hiprtTraversalHintDefault ,

8 nullptr /* payload */, funcTable);
9 hiprtHit anyHit = anyHitTr.getNextHit ();
10
11 hiprtSceneTraversalClosestCustomStack <hiprtGlobalStack , hiprtEmptyInstanceStack >

closestTr(scene , ray , stack , instanceStack , hiprtFullRayMask ,
hiprtTraversalHintDefault , nullptr /* payload */, funcTable);

12 hiprtHit closestHit = closestTr.getNextHit ();

There are three things in the code we have not explained yet: the instance stack, the ray mask,
and the traversal hit. All three are not relevant for our use-case, but they could be useful in more
complex scenarios. The instance stack is needed in the case of multi-level instancing. In our case,
we use dummy empty stack that disables code for multi-level instancing and let compiler optimize
the kernel more efficiently. We can optionally define a mask (32 bits) for each instance in the scene
build input. This mask is tested against the ray mask (using the bitwise AND). In our case, as
we have not specified these mask, they are assumed to be full such that the test returns always
true. Last, the traversal hit can indicate from which distribution the ray has been generated (e.g., a
shadow ray). However, in practice, it almost always best to use the default hint.

7.6 Trace Kernel Compilation
The last missing piece is the trace kernel compilation, which injects the HIPRT functionality to a
user kernel. In principle, the trace kernel is nothing else than a regular HIP kernel. As HIPRT is
an open-source project, the obvious way is to include the HIPRT headers directly in the kernel.

25

Ray Tracing using HIP, Yoshimura et al.

Another option is to use bitcode linking that allows to link pre-compiled HIPRT device code to the
user kernel. In general, we can use for the compilation either by HIPCC or HIPRTC in runtime.
This approach works fine unless we use custom functions (e.g., the intersection function we

defined above). Note that HIPRT supports besides the custom intersection functions also custom
intersection filters that allow to filter out intersections during the traversal (e.g., alpha masking
or filtering out self-intersections). The intersection filters are user callbacks similar to the custom
intersection functions, but they can be used also for triangles compared to the custom intersection.
The setup is practically the same as for the custom intersection functions. The custom functions
make the compilation more complex as HIPRT needs to generate a function that dispatches custom
functions based on the geometry type we set before. If we want to use HIPCC, we need to define
the dispatch function manually.
Listing 27 shows how to compile the trace kernel in runtime using hiprtBuildTraceKernels

function that builds the dispatch function out of the box. First, we create the function name-set
and set the name of our custom intersection function. Then, we call hiprtBuildTraceKernels to
compile the module, generating the dispatch function and injecting the HIPRT traversal code to
the user kernel.

Listing 27. Trace kernel compilation via the HIPRT API.

1 hiprtFuncNameSet funcNameSet {};
2 funcNameSet.intersectFuncName = "intersectCustom";
3
4 hiprtApiFunction functionOut {};
5
6 std:: string sourceCode = /* the source code of the HIP module */
7 std:: string functionName = /* kernel function name */
8
9 hiprtBuildTraceKernels(
10 hiprtCtx ,
11 1, /* the number of kernel functions */
12 functionName.c_str(), /* the names of kernel functions */
13 sourceCode.c_str(), /* the source code of the HIP module */
14 "", /* path to the module source file (optional) */
15 0, /* the number of the included headers (optional) */
16 nullptr , /* sources of the included headers (optional) */
17 nullptr , /* the names of included header (optional) */
18 0, /* the number of compilations options (optional) */
19 nullptr , /* compilation options (optional) */
20 1, /* the number of geometry types */
21 1, /* the number of ray types */
22 &funcNameSet , /* custom function namesets (optional) */
23 &functionOut , /* resulting HIP functions */
24 nullptr , /* resulting HIP module (optional) */
25 false /* cache compiled kernes (optional) */);

The signature of the function is similar to hiprtcCreateProgram in HIPRTC. There are a few
optional arguments providing flexibility of the compilation. The mandatory arguments are as
follows: the number of kernels to be compiled, the names of the kernels, and the source code of the
module as a string. The compiled functions are in the form of hiprtApiFunction, which can be
easily cast, for example, to hipFunction_t and launched using the standard HIP API.
Custom functions are passed as an array of funcNameSet structures. The layout of this array

must correspond to the the layout of the function table we defined before. In our example, we have
only one entry, and thus we pass just one funcNameSet object. For multiple functions, the layout

26

Ray Tracing using HIP, Yoshimura et al.

is a flattened 2D table with rows corresponding to ray types and columns to the geometry types
stored in row-major order. Additional information about HIPRT can be found on GPUOpen1.

8 TOPICS BEYOND THIS TECHNICAL REPORT
In this chapter, we presented an introduction to ray tracing with a focus on the GPU implementation
in HIP. However, rendering is a vast area, and we touched only a very small fraction. In this section,
we refer interested readers to additional topics for further exploration.

Rendering AlgorithmsWe presented unidirectional path tracing with the next event estimation
that is sufficient for most of the scenarios. Nevertheless, in complex settings, it might be difficult to
reach the light source by tracing rays only from camera. For example, if the light source is enclosed
by a glass sphere. In such cases, even the next event estimation fails because the light source is
not directly visible. To tackle this problem, various bidirectional algorithms have been proposed.
Bidirectional path tracing [4] casts rays from both the camera and the light sources, stochastically
connecting these paths. Metropolis light transport [4] perturbs light paths using Markov chain
Monte Carlo. Photon mapping [5] operates in two phases. In the first phase are cast photons from
the light sources and stored in a spatial data structure. During the second phase, the camera rays
are cast, collecting photons on the first diffuse surface. Photon mapping is particularly effective for
rendering effects such as caustics.
Monte Carlo and Sampling An orthogonal approach to improving the efficiency of the light

transport simulation is to sample light paths according to a distribution that matches the underlying
light transport. This is called importance sampling (IS) in the context of Monte Carlo integration.
The goal is to draw samples where the integrand has high values. The challenge is that besides the
value we must also compute the corresponding probability density function. We showed a simple
technique sampling according to the cosine term in this chapter. Multiple sampling techniques can
be combined using multiple importance sampling (MIS) [4]. There is a way to improve rendering
efficiency by changing the sampling points themselves, which is stratified sampling or Quasi-
Monte Carlo sequences [13]. Such sequences are spatially distributed across the domain, and they
outperform the convergence of Monte Carlo integration over random samples. Another widely-used
technique is Russian roulette [14], which stochastically terminates paths based on their actual
contribution, elegantly avoiding bias compared to a fixed depth while improving overall efficiency.
We refer to Advanced Global Illumination by Dutré et al. [14] for more details about these methods.

Ray Tracing Since all these algorithms rely on ray tracing, efficiency can be further improved
by optimizing the ray tracing, specifically the BVH. SBVH [15], a BVH construction method using
spatial splits, is an approach that allows objects to be split to achieve tighter bounding boxes, albeit
at the cost of higher memory consumption and more complex construction. H-PLOC [16] is a
highly efficient construction algorithm, building BVHs of very good quality. SBVH and H-PLOC
are implemented as high-quality and balanced options, respectively, in HIPRT.
Increasing RealismWhat is important alongside efficiency is the degree of realism. Material

properties of surfaces have significant impact on realism, and thus modeling the appearance of
real-world materials [17] is another active area of research. In a nutshell, the models describe how
the light is reflected (or refracted) from different directions. Volumetric rendering [18] accounts
for optical effects caused by, for instance, fog or smoke, bringing realism to another level. Spectral
rendering [19] models wavelength-dependent effects such as dispersion and diffraction. We refer
to Physically-based Rendering by Pharr et al. [7] that presents comprehensive overview of the
techniques discussed so far.

1https://gpuopen.com/hiprt/

27

https://gpuopen.com/hiprt/

Ray Tracing using HIP, Yoshimura et al.

Real-time Rendering Ray tracing was originally designed for offline rendering, but thanks
to advances in both hardware and software, ray tracing is gradually penetrating to real-time
applications such as computer games. In this last paragraph, we discuss specifics for real-time
scenarios. Themajor challenge in real-time ray tracing is that time budget is very limited to maintain
real-time frame rates, allowing to trace only very few rays in each frame. Therefore, we need to use
different tricks to get plausible results in several miliseconds. Denoising and upscaling [20] help
mitigate noise caused by insufficient samples and enhance resolution, both of which nowadays
rely predominantly on deep learning trained offline on extensive datasets. Radiance caching [21]
stores radiance in a spatial data structure (or a neural network [22]), allowing to terminate light
path earlier by approximating the remaining radiance by the cached values. ReSTIR [6; 23] is an
algorithm for sampling a large number of light sources designed for real-time scenarios, resampling
light candidates from neighboring pixels and form previous frames, exploiting spatiotemporal
coherence.

REFERENCES
[1] T. Whitted, “An improved illumination model for shaded display,” Commun. ACM, vol. 23, p. 343–349, June 1980.
[2] AMD, “Orochi.” https://gpuopen.com/orochi/, 2020.
[3] J. T. Kajiya, “The rendering equation,” SIGGRAPH Comput. Graph., vol. 20, p. 143–150, Aug. 1986.
[4] E. Veach, Robust monte carlo methods for light transport simulation. PhD thesis, Stanford, CA, USA, 1998. AAI9837162.
[5] H. W. Jensen, Realistic image synthesis using photon mapping. USA: A. K. Peters, Ltd., 2001.
[6] B. Bitterli, C. Wyman, M. Pharr, P. Shirley, A. Lefohn, and W. Jarosz, “Spatiotemporal reservoir resampling for real-time

ray tracing with dynamic direct lighting,” ACM Trans. Graph., vol. 39, Aug. 2020.
[7] M. Pharr, W. Jakob, and G. Humphreys, Physically Based Rendering: From Theory to Implementation (4rd ed.). San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 3rd ed., 2023.
[8] D. Meister, S. Ogaki, C. Benthin, M. J. Doyle, M. Guthe, and J. Bittner, “A survey on bounding volume hierarchies for

ray tracing,” Computer Graphics Forum, vol. 40, no. 2, pp. 683–712, 2021.
[9] I. Wald, “On Fast Construction of SAH-based Bounding Volume Hierarchies,” in Proceedings of Symposium on Interactive

Ray Tracing, pp. 33–40, 2007.
[10] B. Walter, K. Bala, M. Kulkarni, and K. Pingali, “Fast Agglomerative Clustering for Rendering,” in Proceedings of

Symposium on Interactive Ray Tracing, pp. 81–86, 2008.
[11] I. Wald, C. Benthin, and P. Slusallek, “Distributed Interactive Ray Tracing of Dynamic Scenes,” in Proceedings of

Symposium on Parallel and Large-Data Visualization and Graphics, pp. 77–86, 2003.
[12] D. Meister, P. Kulkarni, A. Vasishta, and T. Harada, “Hiprt: A ray tracing framework in hip,” Proc. ACM Comput. Graph.

Interact. Tech., vol. 7, Aug. 2024.
[13] G. Singh, C. Öztireli, A. G. M. Ahmed, D. Coeurjolly, K. Subr, O. Deussen, V. Ostromoukhov, R. Ramamoorthi, and

W. Jarosz, “Analysis of sample correlations for Monte Carlo rendering,” Computer Graphics Forum, vol. 38, pp. 473–491,
May 2019.

[14] P. Dutre, K. Bala, and P. Bekaert, Advanced Global Illumination. USA: A. K. Peters, Ltd., 2002.
[15] M. Stich, H. Friedrich, and A. Dietrich, “Spatial splits in bounding volume hierarchies,” in Proceedings of the Conference

on High Performance Graphics 2009, HPG ’09, (New York, NY, USA), p. 7–13, Association for Computing Machinery,
2009.

[16] C. Benthin, D. Meister, J. Barczak, R. Mehalwal, J. Tsakok, and A. Kensler, “H-ploc: Hierarchical parallel locally-ordered
clustering for bounding volume hierarchy construction,” Proceedings of the ACM on Computer Graphics and Interactive
Techniques, vol. 7, pp. 30:1–30:14, Aug. 2024.

[17] D. Guarnera, G. Guarnera, A. Ghosh, C. Denk, and M. Glencross, “Brdf representation and acquisition,” Computer
Graphics Forum, vol. 35, no. 2, pp. 625–650, 2016.

[18] J. Novák, I. Georgiev, J. Hanika, and W. Jarosz, “Monte Carlo methods for volumetric light transport simulation,”
Computer Graphics Forum (Proceedings of Eurographics - State of the Art Reports), vol. 37, May 2018.

[19] A. Weidlich, A. Forsythe, S. Dyer, T. Mansencal, J. Hanika, A. Wilkie, L. Emrose, and A. Langlands, “Spectral imaging
in production: course notes siggraph 2021,” in ACM SIGGRAPH 2021 Courses, SIGGRAPH ’21, (New York, NY, USA),
Association for Computing Machinery, 2021.

[20] P. Kazmierczyk, S. Kim, W. Uss, W. Kalinski, T. Galaj, M. Maciejewski, and R. Harihara, “Joint denoising and upscaling
via multi-branch and multi-scale feature network,” Proc. ACM Comput. Graph. Interact. Tech., vol. 8, May 2025.

28

https://gpuopen.com/orochi/

Ray Tracing using HIP, Yoshimura et al.

[21] J. Krivanek, P. Gautron, S. Pattanaik, and K. Bouatouch, “Radiance caching for efficient global illumination computation,”
IEEE Transactions on Visualization and Computer Graphics, vol. 11, no. 5, pp. 550–561, 2005.

[22] T. Müller, F. Rousselle, J. Novák, and A. Keller, “Real-time neural radiance caching for path tracing,” ACM Trans. Graph.,
vol. 40, July 2021.

[23] C. Wyman, M. Kettunen, D. Lin, B. Bitterli, C. Yuksel, W. Jarosz, and P. Kozlowski, “A gentle introduction to restir path
reuse in real-time,” in ACM SIGGRAPH 2023 Courses, SIGGRAPH ’23, (New York, NY, USA), Association for Computing
Machinery, 2023.

29

	1 Introduction
	2 Orochi
	3 Rendering Triangles
	3.1 Ray-Triangle Intersection
	3.2 Camera Model
	3.3 Rendering Triangles
	3.4 Bonus: Lens Distortion

	4 Ambient Occlusion
	4.1 Cosine Law and Cosine-Weighted Sampling
	4.2 Practical Consideration

	5 Path Tracing
	5.1 Algorithm
	5.2 Next Event Estimation

	6 Bounding Volume Hierarchy (BVH)
	6.1 Bounding Volumes
	6.2 Bounding Volume Hierarchy (BVH)

	7 HIPRT: HIP Ray Tracing API
	7.1 Context Initialization
	7.2 Geometry Construction
	7.3 Scene Contruction
	7.4 Custom Intersection
	7.5 Traversal Stacks and Traversal Objects
	7.6 Trace Kernel Compilation

	8 Topics Beyond This technical report
	References

