
1 |

HIPRT: A Ray Tracing Framework in HIP
High Performance Graphics 2024

Daniel Meister

Paritosh Kulkarni

Aaryaman Vasishta

Takahiro Harada

2 |

HIPRT: Ray Tracing in HIP

• Professional rendering features

• Multi-level instancing

• Motion blur

• Intersection filters

• Custom primitives

• Bounding volume hierarchy (BVH)

• Scalable BVH construction

• Novel SBVH builder on GPU

• Cross-platform

• HIP ≈ “CUDA on AMD/Nvidia HW”

• Windows and Linux OSs

• AMD (including MI series) and Nvidia (SW emulation)
• Scientific computing

• Small codebase

• ~17k lines of code

• HIP supports modern C++ standards

• Open source

3 |

Renderers using HIPRT

4 |

API Design

• Not limited by standards by third parties

• We can design our own API focusing on ease of use

• Ray tracing programmable pipeline

• Opaque and difficult to setup and debug

• Shader binding table (SBT) is the most difficult part
• Whole book chapters and blogs about how to set it up

• Not suitable for professional rendering
• Coupling ray tracing and shading

• Shading is typically very complex

• HIPRT follows a similar philosophy as Embree

• Minimal host code setup

• Providing only the ray tracing functionality (a.k.a. ray queries)
• Shading and data assignment on the application side

• SBT reduced to a 2D table
• Custom intersections and intersection filters

5 |

Example

// Triangle mesh

hiprtTriangleMeshPrimitive mesh;

mesh.triangleIndices = ...;

mesh.vertices = ...;

...

// Create and build geometry

hiprtGeometry geom;

hiprtCreateGeometry(..., geom);

hiprtBuildGeometry(..., geom);

// Build trace kernel

hiprtBuildTraceKernels(...);

__global__ void RayTraceKernel(hiprtGeometry geom, ...)

{

 // Generate ray

 hiprtRay ray = generateRay(...);

 // Traversal object

 hiprtGeomTraversalClosest tr(geom, ray, ...);

 // Find hit

 hiprtHit hit = tr.getNextHit();

 ...

}

Host code Device code

6 |

BVH Builders

LBVH

• Fast build

• Spatial median splits via Morton codes

• One bottom-up pass [Apetrei 2014]
• Building topology

• Refitting bounding boxes

PLOC

• Balanced build

• Iterative agglomerative clustering
• One kernel launch per iteration (a.k.a PLOC++)

• Morton codes to find nearest neighbors

7 |

BVH Builders

SBVH

• High-quality build
• Slow and high-memory usage

• Object and spatial splits
• Robust to diagonal and oblong primitives

• GPU implementation using binning
• Quality very close to SBVH on CPU [Stich et al. 2009]

• Only un-splitting is not implemented

• Spatial binning is the bottleneck (global atomics)

• Iterative top-down build with multiple kernel launches

Custom BVH

• Import own BVH using HIPRT API

• Useful for benchmarking or research

BVH with spatial splits

Standard BVH

8 |

Multi-Level Instancing

• Arbitrary number of levels

• Additional stack needed for more than two levels

• Storing ray and a pointer to acceleration struct. above

• Moana Island on AMD Radeon PRO W7900

• 3-level hierarchy

• 156M unique primitives and 31B instantiated primitives

9 |

Motion Blur

• Multi-segment motion blur with non-uniform intervals

• You can explicitly specify time for each key frame

• For example, key frames with times 0.0, 0.1, and 1.0
• HIPRT uses 3 key frames

• OptiX needs to explicitly resample to 11 key frames

• Correct component-wise interpolation even for matrices

• Internal matrix decomposition

OptiX

(linear matrix

interpolation)

HIPRT

(component-wise

interpolation)

A singularity for

t = 0.5

OptiX HIPRT

10 |

Ray Traversal

• Stack-based algorithm

• Traversal stack as a template argument

• Best performance with the global stack
• Rolling stack in shared memory (top-most entries)

• Global memory as backup (bottom-most entries)

• Intersection filters

• A custom functions filtering found intersections
• Inspired by Embree

• Useful for alpha masking or filtering self-intersections

• In the programmable pipeline you have no other choice

than to use any-hit shader

A cutout filter alpha masking based on texture coordinates

11 |

Evaluation Setup

• Wavefront path tracer

• Isolating ray tracing and shading
• Various tracer implementations

• Scene graph
• Pre-transformed geometry (one large instance)

• Original two-level partitioning

• Ray tracing backends

• HIPRT
• Fast, balanced, and high-quality builds

• Embree BVH as imported BVH

• High-quality build with spatial splits built on CPU

• Vulkan
• Fast build and fast trace (HQ) options

• HW & SW

• AMD Radeon PRO W7900 (48GB)

• ROCm 5.7 & Vulkan 1.3

12 |

Test Scenes

Toy Shop

5212k tris

Bistro Interior

1207k tris

Museum

3650k tris

Hangar Ship

1235k tris

Opera House

2512k tris

Bistro Exterior

2829k tris

Sci-fi

4809k tris

Zero Day

5165k tris

Trains

836k tris

Yokohama

8217k tris

13 |

Trace Times – Two Levels

• Averaged normalized trace

times per wave

• Normalized by PLOC

• Averaged over all scenes

• Vulkan faster for primary

rays

• HIPRT faster for shadow

and secondary rays

• SBVH is faster than Embree

1
.1

4 1
.2

1

1
.1

4

1 1 1

0
.9

5

0
.9

6

0
.8

4

0
.9

7 1
.0

2

0
.9

1

1
.3

1 1
.3

6

0
.9

2

1
.1

9

0
.9

2

PRIMARY RAYS SHADOW RAYS SECONDARY RAYS

HIPRT LBVH HIPRT PLOC HIPRT SBVH HIPRT Embree Vulkan Fast Vulkan HQ

14 |

Build Times and SAH Cost

• Averaged normalized build

times (pre-transformed)

• Normalized by PLOC

• Averaged over all scenes

• LBVH provides the fastest

build overall

• PLOC is faster than both

Vulkan options

• SBVH is slow but provides

lowest SAH cost

1
.2

1

1

0
.7

8

0
.7

8

SAH COST

HIPRT LBVH HIPRT PLOC

HIPRT SBVH HIPRT Embree

0
.4

8 1

1
4
.8

1

1
.2

2

2
.7

BUILD TIME

HIPRT LBVH HIPRT PLOC

HIPRT SBVH Vulkan Fast

Vulkan HQ

15 |

Time-to-Image = Build Time + Trace time

Yokohama (Pre-transformed)

• Build time corresponds to the offset

at zero

• SBVH outweighs the higher build

overhead at around 64 samples

16 |

Conclusion

HIPRT is an open-source ray tracing framework tailored for AMD GPUs

• Performance comparable with Vulkan yet API is a way more user-friendly

• SBVH provides excellent performance but the construction is slow

• Professional rendering

• Motion blur, multi-level instancing, intersection filters

• Pointing out some of the drawbacks of existing APIs

• Shader binding table or motion blur

Future Work

• H-PLOC

• Curve primitive

• Optimization of advanced features

Thank you for your attention!

• The project webpage

• https://gpuopen.com/hiprt/

• The source codes

• https://github.com/GPUOpen-LibrariesAndSDKs/HIPRT

• The PBRT-v4 port

• https://github.com/GPUOpen-Effects/pbrt-v4

https://gpuopen.com/hiprt/
https://github.com/GPUOpen-LibrariesAndSDKs/HIPRT
https://github.com/GPUOpen-Effects/pbrt-v4

18 |

Internal Format

Triangle pairing (preprocess)

• Pairing triangles in the same warp
• A single kernel launch

• Reduces the input for further passes about 30%

Conversion BVH2 to BVH4 (postprocess)

• Iterative top-down pass
• One kernel launch per level

19 |

Instance Bounding Boxes

• We need bounding boxes of the instantiated

bottom-level geometries

• Transforming the root bounding box is too

conservative

• Transforming geometric primitives

themselves is too costly

• Transforming grandchildren or children is a

good compromise

BLAS

AABB

Instance

transformation

Instance

AABB

Too conservative Tighter bounds

20 |

Batch Construction

• Multiple HIP streams allow to build multiple BVH

concurrently

• HIP kernel launch and allocation is expensive

• Batch construction allows to build multiple small BVH in a

single kernel launch

• The size of a BVH is limited by the block size

• All data in shared memory (no additional global buffers)

One hair strand = One BLAS

4M BLAS’s

21 |

Trace Times – Pre-transformed

• Averaged normalized trace

times per wave

• Normalized by PLOC

• Averaged over all scenes

• LBVH deviated by an outlier

• 32-bit Morton codes not

sufficient in Opera House

• HIPRT faster than Vulkan

• SBVH is comparable with

Embree

5
.8

6

7
.9

9

5
.6

1

1 1 1

0
.7

7

0
.7

5

0
.6

4

0
.7

7

0
.7

5

0
.6

4

1
.4

4

1
.4

8

1
.2

7

1
.0

3

1
.0

6

0
.9

2

PRIMARY RAYS SHADOW RAYS SECONDARY RAYS

HIPRT LBVH HIPRT PLOC HIPRT SBVH HIPRT Embree Vulkan Fast Vulkan HQ

22 |

Trace Speed – Secondary Bounces

Bistro Interior (Pre-transformed)

	Default Section
	Slide 1: HIPRT: A Ray Tracing Framework in HIP High Performance Graphics 2024
	Slide 2: HIPRT: Ray Tracing in HIP
	Slide 3: Renderers using HIPRT
	Slide 4: API Design
	Slide 5: Example
	Slide 6: BVH Builders
	Slide 7: BVH Builders
	Slide 8: Multi-Level Instancing
	Slide 9: Motion Blur
	Slide 10: Ray Traversal
	Slide 11: Evaluation Setup
	Slide 12: Test Scenes
	Slide 13: Trace Times – Two Levels
	Slide 14: Build Times and SAH Cost
	Slide 15: Time-to-Image = Build Time + Trace time
	Slide 16: Conclusion
	Slide 17: Thank you for your attention!
	Slide 18: Internal Format
	Slide 19: Instance Bounding Boxes
	Slide 20: Batch Construction
	Slide 21: Trace Times – Pre-transformed
	Slide 22: Trace Speed – Secondary Bounces

