Advanced Rendering Research Group

AMD ¢t

HIPRT: A Ray Tracing Framework in HIP

High Performance Graphics 2024

Daniel Meister

Paritosh Kulkarni R

Aaryaman Vasishta

Takahiro Harada Advanced Rendering Research Group
AMDA

HIPRT: Ray Tracing in HIP

Professional rendering features
Multi-level instancing
Motion blur
Intersection filters
Custom primitives

Bounding volume hierarchy (BVH)
Scalable BVH construction
Novel SBVH builder on GPU

ARR

Advanced Rendering Research Group

Cross-platform
HIP = “CUDA on AMD/Nvidia HW”
Windows and Linux OSs
AMD (including Ml series) and Nvidia (SW emulation)

Scientific computing

Small codebase
~17k lines of code
HIP supports modern C++ standards
Open source

AMDZ

Renderers using HIPRT

blender’

ARR

Advanced Rendering Research Group

AMDA
RAJ=0N

ProRender

AMDZ

ARR

Advanced Rendering Research Group

API Design

Not limited by standards by third parties
We can design our own API focusing on ease of use

Ray tracing programmable pipeline
Opaque and difficult to setup and debug
Shader binding table (SBT) is the most difficult part

Whole book chapters and blogs about how to set it up

Not suitable for professional rendering
Coupling ray tracing and shading
Shading is typically very complex

HIPRT follows a similar philosophy as Embree
Minimal host code setup

Providing only the ray tracing functionality (a.k.a. ray queries)
Shading and data assignment on the application side

SBT reduced to a 2D table

Custom intersections and intersection filters

AMDZ

Example

Host code

hiprtTriangleMeshPrimitive mesh;
mesh.triangleIndices = ...;
mesh.vertices = ...;

hiprtGeometry geom;

hiprtCreateGeometry (..., geom);
hiprtBuildGeometry (..., geom);
hiprtBuildTraceKernels(...);

ARR

Advanced Rendering Research Group

Device code

__global void RayTraceKernel (hiprtGeometry geom, ...)
{
hiprtRay ray = generateRay(...);

hiprtGeomTraversalClosest tr(geom, ray, ...);

hiprtHit hit = tr.getNextHit (),

AMDZ

BVH Builders

LBVH
Fast build
Spatial median splits via Morton codes

One bottom-up pass [Apetrei 2014]
Building topology
Refitting bounding boxes

PLOC
Balanced build

Iterative agglomerative clustering
One kernel launch per iteration (a.k.a PLOC++)
Morton codes to find nearest neighbors

ARR

Advanced Rendering Research Grou

AMDZ

BVH Builders

SBVH
* High-quality build
+ Slow and high-memory usage

+ Object and spatial splits

* Robust to diagonal and oblong primitives

+ GPU implementation using binning
* Quality very close to SBVH on CPU [Stich et al. 2009]
« Only un-splitting is not implemented
« Spatial binning is the bottleneck (global atomics)
+ lIterative top-down build with multiple kernel launches

Custom BVH
* Import own BVH using HIPRT API
- Useful for benchmarking or research

Standard BVH

BVH with spatial splits

4

ARR

Advanced Rendering Research Group

AMDZ

ARR

Advanced Rendering Research Group

Multi-Level Instancing

- Arbitrary number of levels * Moana Island on AMD Radeon PRO W7900

- Additional stack needed for more than two levels ~ * 3-levelhierarchy | | .
- Storing ray and a pointer to acceleration struct. above ~ ° 156M unique primitives and 31B instantiated primitives

AMDZ

ARR

Advanced Rendering Research Group

Motion Blur

_ _ _ _ _ A singularity for
+ Multi-segment motion blur with non-uniform intervals t=0.5
- You can explicitly specify time for each key frame

- For example, key frames with times 0.0, 0.1, and 1.0

« HIPRT uses 3 key frames
- OptiX needs to explicitly resample to 11 key frames

- Correct component-wise interpolation even for matrices
- Internal matrix decomposition

OptiX
(linear matrix
interpolation)

1 00 -1 0 0 cos(tw) sin(tw) O
(I1—¢t)|0 1 0] +¢t| 0 —1 O0f# |—sin(tw) cos(tm) O
0 0 1 0O 0 1 0 0 1 HIPRT
\ J N\) (component-wise
Y Y interpolation)
OptiX HIPRT

AMDZ

ARR

Advanced Rendering Research Group

Ray Traversal

Stack-based algorithm

Traversal stack as a template argument

Best performance with the global stack
Rolling stack in shared memory (top-most entries)
Global memory as backup (bottom-most entries)

Intersection filters

A custom functions filtering found intersections
Inspired by Embree

Useful for alpha masking or filtering self-intersections

In the programmable pipeline you have no other choice
than to use any-hit shader

A cutout filter alpha masking based on texture coordinates

10

AMDZ

Evaluation Setup

Wavefront path tracer

Isolating ray tracing and shading
Various tracer implementations

Scene graph
Pre-transformed geometry (one large instance)
Original two-level partitioning

Ray tracing backends

HIPRT

Fast, balanced, and high-quality builds
Embree BVH as imported BVH
High-quality build with spatial splits built on CPU

Vulkan
Fast build and fast trace (HQ) options

HW & SW
AMD Radeon PRO W7900 (48GB)
ROCm 5.7 & Vulkan 1.3

11

ARR

Advanced Rendering Research Group

AMDZ

= ARR
Test Scenes

Advanced Rendering Research Group

Bistro Exterior
2829k tris

Trains Bistro Interior Hangar Ship
836k tris 1207k tris 1235k tris

:

T J
-

L

Museum Sci-fi Zero Day Toyrshop Yokohama
3650k tris 4809k tris 5165k tris SYAVIQUES 8217k tris

12 AMDZU

ARR

Advanced Rendering Research Group

Trace Times — Two Levels

#HIPRT LBVH ®=HIPRT PLOC ®HIPRT SBVH ®HIPRT Embree = Vulkan Fast = Vulkan HQ

Averaged normalized trace
times per wave

* Normalized by PLOC

« Averaged over all scenes

1.31
1.36

1.14

Vulkan faster for primary
rays

0.84
0.9
0.92

+ HIPRT faster for shadow
and secondary rays

« SBVH is faster than Embree

PRIMARY RAYS SHADOW RAYS SECONDARY RAYS

AMDZ

14

Build Times and SAH Cost

Averaged normalized build
times (pre-transformed)

* Normalized by PLOC

+ Averaged over all scenes

* LBVH provides the fastest
build overall

« PLOC is faster than both
Vulkan options

- SBVH is slow but provides
lowest SAH cost

® HIPRT LBVH m HIPRT PLOC
m HIPRT SBVH = Vulkan Fast

2.7

ARR

Advanced Rendering Research Group

® HIPRT LBVH = HIPRT PLOC
mHIPRT SBVH ®HIPRT Embree

Vulkan HQ
i
(e 0]
ﬁ:
i
N
N
R~ -
o
BUILD TIME

—

N

—i

—
© ©
~ ~
o o
SAH COST

AMDZ

15

Time-to-Image = Build Time + Trace time

Yokohama (Pre-transformed)

Build time corresponds to the offset
at zero

SBVH outweighs the higher build
overhead at around 64 samples

HIPRT LBVH Vulkan Fast
—— HIPRT PLOC —— Vulkan HQ
HIPRT SBVH

N
o
o
o

»
E
Q
(o))
©
£
o
B
)
£
[

60 80
Samples per pixel [-]

ARR

Advanced Rendering Research Group

AMDZ

16

Conclusion

HIPRT is an open-source ray tracing framework tailored for AMD GPUs

Performance comparable with Vulkan yet APl is a way more user-friendly
SBVH provides excellent performance but the construction is slow

Professional rendering
Motion blur, multi-level instancing, intersection filters

Pointing out some of the drawbacks of existing APIs
Shader binding table or motion blur

Future Work
H-PLOC
Curve primitive
Optimization of advanced features

ARR

Advanced Rendering Research Grou

AMDZ

Thank you for your attention!

The project webpage
https://gpuopen.com/hiprt/

The source codes
https://github.com/GPUOpen-LibrariesAndSDKs/HIPRT

The PBRT-v4 port
https://qgithub.com/GPUOpen-Effects/pbrt-v4

https://gpuopen.com/hiprt/
https://github.com/GPUOpen-LibrariesAndSDKs/HIPRT
https://github.com/GPUOpen-Effects/pbrt-v4

Internal Format

Triangle pairing (preprocess)
+ Pairing triangles in the same warp
A single kernel launch

* Reduces the input for further passes about 30%

Conversion BVH2 to BVH4 (postprocess)

* lterative top-down pass
One kernel launch per level

18

ARR

Advanced Rendering Research Grou

AMDZ

19

Instance Bounding Boxes

* We need bounding boxes of the instantiated
bottom-level geometries

« Transforming the root bounding box is too
conservative

« Transforming geometric primitives
themselves is too costly

+ Transforming grandchildren or children is a
good compromise

Too conservative

BLAS
AABB

Instance
transformation

Instance
AABB

ARR

Advanced Rendering Research Grou

Tighter bounds

AMDZ

20

Batch Construction

* Multiple HIP streams allow to build multiple BVH

concurrently

« HIP kernel launch and allocation is expensive

+ Batch construction allows to build multiple small BVH in a
single kernel launch
« The size of a BVH is limited by the block size
- All data in shared memory (no additional global buffers)

One hair strand = One BLAS
4M BLAS'’s

ARR

Advanced Rendering Research Group

AMDZ

Trace Times — Pre-transformed

Averaged normalized trace
times per wave

* Normalized by PLOC

+ Averaged over all scenes

LBVH deviated by an outlier

« 32-bit Morton codes not
sufficient in Opera House

HIPRT faster than Vulkan

SBVH is comparable with
Embree

21

= HIPRT LBVH

5.86

1.44

1
0.77
0.77

PRIMARY RAYS

m HIPRT PLOC ®mHIPRT SBVH ®HIPRT Embree

7.99

1.03
1
0.75
0.75
1.48

SHADOW RAYS

1.06

ARR

Advanced Rendering Research Group

SECONDARY RAYS

»Vulkan Fast mVulkan HQ
—
©
Lo
N~
N
— I
— <t < <
© © °
o o

AMDZ

ARR

Advanced Rendering Research Group

Trace Speed — Secondary Bounces

Bistro Interior (Pre-transformed)

HIPRT LBVH HIPRT Embree
—8— HIPRT PLOC Vulkan Fast
HIPRT SBVH =8— Vulkan HQ

w
~
w0
>
©
o
=
e
[}
[
o
w0
Q
O
E
=

AMDZ

	Default Section
	Slide 1: HIPRT: A Ray Tracing Framework in HIP High Performance Graphics 2024
	Slide 2: HIPRT: Ray Tracing in HIP
	Slide 3: Renderers using HIPRT
	Slide 4: API Design
	Slide 5: Example
	Slide 6: BVH Builders
	Slide 7: BVH Builders
	Slide 8: Multi-Level Instancing
	Slide 9: Motion Blur
	Slide 10: Ray Traversal
	Slide 11: Evaluation Setup
	Slide 12: Test Scenes
	Slide 13: Trace Times – Two Levels
	Slide 14: Build Times and SAH Cost
	Slide 15: Time-to-Image = Build Time + Trace time
	Slide 16: Conclusion
	Slide 17: Thank you for your attention!
	Slide 18: Internal Format
	Slide 19: Instance Bounding Boxes
	Slide 20: Batch Construction
	Slide 21: Trace Times – Pre-transformed
	Slide 22: Trace Speed – Secondary Bounces

