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1 Introduction
The bounding volume hierarchy (BVH) is one of the most popular acceleration structures in
rendering used on both CPU and GPU. Its most common form in the context of ray tracing is a
binary BVH, where each node has two children (i.e., a branching factor of two), and the bounding
volumes are axis-aligned bounding boxes (AABBs). In the context of interactive/real-timeworkflows,
reducing BVH construction times has become increasingly important as BVHs need to be either
refit or rebuilt per frame to support dynamic content. BVH refitting is faster than a full rebuild but
depending on primitive motion, it can cause severe BVH quality degeneration. BVH construction
algorithms based on agglomerative clustering or treelet restructuring, which build the hierarchy in
a bottom-up fashion, have become a favorable solution for contemporary GPU architectures, as
their task distribution scheme is more suited to the GPU’s massively parallel compute architecture
than the traditional top-down approaches.
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In this paper, we propose a novel BVH construction algorithm based on the parallel locally-
ordered clustering approach (PLOC) [Meister and Bittner 2018a] and PLOC++ [Benthin et al.
2022]. The latter is considered one of the fastest high-quality bottom-up binary BVH construction
algorithms for GPUs available. The biggest weakness of PLOC++ is its iterative nature, where
a kernel launch per iteration is required to merge cluster candidates and thereby construct the
inner nodes. The number of cluster candidates of the next iteration depends on the outcome of
the current iteration, introducing a costly host-device synchronization dependency chain. The
length of this chain is approximately proportional to the maximum depth of the tree. Our novel
approach completely removes the host-device communication by constructing the binary BVH in a
single kernel launch. Using the publicly available implementation of PLOC++ [Benthin 2023] as a
baseline, our approach achieves up to 4.4× faster binary BVH construction times, leading to a total
BVH build time reduction (including all preprocessing and postprocessing phases) of up to 1.8×.
Compared to agglomerative treelet restructuring, ATRBVH [Domingues and Pedrini 2015], another
widely used treelet reconstruction-based BVH build algorithm, we achieve even higher BVH build
time reductions: up to 13× faster binary BVH and up to 3.6× faster total BVH construction time.
Compared to both competing GPU BVH build algorithms, our method is significantly simpler,
making it an easy-to-implement approach for any kind of real-time high-quality BVH construction
scenario.
In addition to efficient binary BVH construction, we propose a novel algorithm to address the

second most costly BVH construction phase, i.e., the conversion of a binary BVH to a wide BVH
(i.e., BVH with a branching factor higher than two). Wide BVHs are typically employed by modern
ray tracing frameworks and required by various ray tracing hardware implementations. Similar to
our binary BVH construction algorithm, our conversion phase needs just a single kernel launch.

2 Related Work
Various approaches for BVH construction, in particular in the context of ray tracing, have been
proposed over the years. We discuss only the most relevant work here, and refer the reader to the
survey by Meister et al. [2021] for more details. Most state-of-the-art BVH construction algorithms
that focus on providing high-quality BVH for fast ray traversal performance minimize a cost
function known as the surface area heuristic (SAH) [Goldsmith and Salmon 1987].

LBVH Lauterbach et al. [2009] proposed one of the earliest construction algorithms for GPUs
known as LBVH. The algorithm ignores the SAH and instead is based on sorting triangles along
a Morton curve. The key observation is that the Morton curve defines an implicit hierarchical
scene partitioning constructed by spatial median splits that can be easily converted to an explicit
BVH. Karras [2012] reformulated the algorithm such that the BVH topology is constructed in a
single kernel launch, but another bottom-up pass is still needed to fit the node bounding boxes.
Apetrei [2014] proposed a bottom-up algorithm which constructs the BVH topology and fits the
bounding boxes simultaneously in a single kernel launch. Vinkler et al. [2017] proposed extended
Morton codes which encode not only spatial location but also the size of a triangle, improving the
BVH quality with little overhead. However, even with this extension, the quality of the resulting
BVHs is inferior to approaches which explicitly optimize the cost function. The strength of LBVH
is its speed, and thus, it is used in combination with more advanced algorithms such as build-from-
hierarchy [Hunt et al. 2007] (i.e., using the LBVH partitioning to restrict the search space of the
local optimizations) or optimization techniques (i.e., using LBVH to construct an initial BVH).
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Agglomerative clustering Walter et al. [2008] proposed using agglomerative clustering to construct
a BVH in a bottom-up fashion in contrast to traditionally used top-down approaches, building
BVHs of higher quality at the cost of higher construction times. The nearest neighbor search is the
bottleneck of this algorithm; the authors proposed to accelerate it by a first-stage KD-tree. Gu et al.
[2013] proposed a BVH construction algorithm known as approximative agglomerative clustering
(AAC), designed for multi-core CPUs. The algorithm starts from the root, recursively partitioning
initial clusters based on the partitioning given by LBVH. Once the number of clusters is lower
than a given threshold, the algorithm starts merging to decrease the number of clusters under the
threshold. Then, the clusters are merged with the cluster from the sibling with regard to the LBVH
partitioning. This process continues until the whole BVH is constructed. To accelerate the nearest
neighbor search, the authors cache the distances in a distance matrix, updating the distances only
for newly constructed clusters.

PLOC Meister and Bittner [2018a] proposed parallel locally-ordered clustering (PLOC), adapting
agglomerative clustering for GPUs. The nearest neighbors are searched along a list of clusters
ordered by aMorton curve.The list of clusters can be more easily maintained and updated in parallel,
unlike a KD-tree or a distance matrix. The algorithm iteratively merges multiple cluster pairs in
parallel, but each iteration consists of multiple kernel launches. Benthin et al. [2022] proposed a
method to fuse all the kernel launches per iteration in a single one; this approach is known as
PLOC++, and it is considered one of the fastest high-quality BVH builders to date. Viitanen et al.
[2018] proposed a dedicated hardware implementation of the PLOC algorithm.

Treelet Restructuring Algorithms based on treelet reconstruction take an initial BVH and perform
incremental topology updates to minimize the cost function. As the BVH is already constructed, the
cost function can be optimized globally (unlike construction algorithms). Karras and Aila [2013]
proposed a GPU-based algorithm, restructuring treelets of a fixed size in parallel. The algorithm
starts from the leaves, proceeding up to the root. Once the subtree has enough nodes to form
a treelet, the algorithm reconstructs the treelet in a brute-force manner. An advantage is that
treelet restructuring can be efficiently implemented via warp (wave) intrinsics [Nickolls et al. 2008].
Agglomerative treelet restructuring, ATRBVH [Domingues and Pedrini 2015], replaced the brute-
force algorithm with agglomerative clustering, achieving the same quality at a higher construction
speed.

Wide BVH Conversion The aforementioned construction methods build binary BVHs (BVH2)
which typically have to be converted to wider BVHs. A BVH2 can be converted to a wide BVH in a
top-down fashion [Wald et al. 2008] by replacing children (e.g., selecting the one with the largest
surface area) by grandchildren until all slots of a =-wide BVH node are occupied. This process
continues recursively. Pinto [2010] and Ylitie et al. [2017] proposed an algorithm performing this
conversion in an SAH-optimal way. The algorithm is based on dynamic programming consisting of
two passes, one bottom-up and one top-down. Firstly, the bottom-up pass computes for each inner
node the costs of representing the corresponding subtree using various numbers of trees. Then, the
top-down pass based on the costs from the first pass reconstructs the optimal wide tree.

3 Hierarchical PLOC (H-PLOC)
In this section, we describe our novel construction algorithm called hierarchical PLOC (H-PLOC),
followed by implementation details. In the following, we will refer to a binary BVH as BVH2 and
use the terms work item and wave as equivalents to the CUDA terms thread and warp [Nickolls
et al. 2008]. The common size of a wave (CUDA warp) is 32 work items (CUDA threads).
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3.1 Background
The H-PLOC algorithm combines the strengths of LBVH [Apetrei 2014] and PLOC++ [Benthin et al.
2022]. We briefly review the details of both algorithms in this section.

LBVH [Apetrei 2014] builds the BVH in a bottom-up fashion, proceeding from the leaves up to the
root, using just a single kernel launch. The algorithm keeps, for each node, a range of Morton codes
belonging to the corresponding subtree. The parent of a node lies either in a position preceding
the first element in the range or a position succeeding the last element in the range, which can be
efficiently determined based on the Morton codes. Starting from the leaves, following the paths
through the binary hierarchy up to the root fully in parallel requires atomic synchronization to
ensure that only one of the two threads arriving at each inner node is allowed to continue.

PLOC++ [Benthin et al. 2022] builds the BVH iteratively, merging multiple cluster pairs in parallel
in each iteration. Each iteration consists of three phases: nearest neighbor search, merging, and
compaction. The list of clusters, initialized with primitive bounding boxes, is sorted based on a
Morton curve. In the first phase, each cluster in the list searches for its nearest neighbor from its
location within search radius ' in parallel, selecting the one that minimizes the surface area of the
merged bounding boxes. A segment of clusters corresponding to the work group plus additional
border clusters is loaded into shared local memory prior to the actual search to reduce access latency.
Benthin et al. [2022] showed the nearest neighbor search can be simplified further by searching
only to the right and propagating the result by an atomic operation to neighboring candidates. In
the second phase, cluster pairs are merged if the nearest neighbors mutually correspond. The first
cluster in the cluster pair is replaced by the merged cluster, and the second cluster is marked as
invalid. In the last phase, invalid clusters are removed by a compaction operation. As the work
groups do not need to communicate with each other, all three steps can be fused into a single kernel.

3.2 Algorithm Overview
Our approach builds a BVH in a single kernel launch in the bottom-up fashion in the same manner
as Apetrei [2014] for LBVH and unlike PLOC++. Similar to other build-from-hierarchy approaches,
the partitioning given by LBVH serves only as a guide for the final BVH construction. We are
not interested in the actual LBVH tree but only track the ranges of Morton codes for currently
processed nodes; the nodes themselves are not actually stored. Besides the Morton codes, we
keep the list of cluster indices for each inner node. Initially, each leaf is considered as a cluster. In
each LBVH inner node, we concatenate the cluster lists of both children. If the number of clusters
exceeds a predefined merging threshold (a parameter of the algorithm), we invoke a variant of the
PLOC++-based cluster merging algorithm [Benthin et al. 2022] to reduce the number of clusters
until it is below the threshold (which may require several merging and compaction iterations).
Reducing the number to just below the threshold instead of reducing it to a single root delays
merging and increases the probability of putting larger clusters higher up in the tree. This generally
improves BVH quality for scenes with highly varying primitive sizes. The essential steps of our
approach are illustrated in Figure 1.
When we reach the root node of the LBVH tree, we perform cluster merging repeatedly until

only a single cluster remains. This cluster becomes the root node of the output BVH. Note that the
cluster indices can be stored efficiently in sub-arrays corresponding to the Morton code ranges
since the number of clusters is bounded by the length of the range. The cluster merging phases
consist of finding the nearest neighbors among the clusters in the list and creating new cluster
nodes from merged pairs. Each newly created cluster replaces one of its children in the cluster list,
while the other is invalidated, followed by a cluster list compaction.
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We maximize efficiency by choosing a merging threshold of half the GPU’s wave size, which
means the length of two concatenated cluster lists will be between half and full wave size. This
allows for a more efficient merging and compaction of cluster lists (see Section 3.3).

3.3 Implementation
The main loop of our approach is illustrated in Algorithm 1. Initially, we assign one work item per
leaf and follow the LBVH hierarchy upwards. For the bottom-up traversal, we maintain an array of
parent node IDs (initialized to an invalid state) which is atomically updated to ensure that only one
of the two paths arriving at an inner node is allowed to continue. The update of parent node IDs
can be efficiently implemented by an atomic exchange operation: only if the exchange returned a
valid ID is the work item allowed to continue. As paths quickly terminate, wave utilization - the
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Fig. 1. Illustration of H-PLOC’s bottom-up construction process using a wave size of 4 and merging threshold
of 2 (half the wave size): (a) Leaf nodes (grey) and inner nodes (green) of a binary hierarchy over 8 primitives
defined by their Morton codes (light blue). Each (green) inner node covers a range of leaf nodes. The Morton
code hierarchy only serves as a guide for constructing the final BVH2. (b) At inner nodes 1 and 6 (Morton
code hierarchy), the number of clusters exceeds the merging threshold. PLOC++-based merging of clusters is
executed, thereby constructing the inner nodes A, B, and C (violet) of the final BVH and reducing the number
of clusters to equal or less than the threshold. (c) At inner node 4 of the Morton code hierarchy, again, the
number of clusters exceeds the threshold. Merging is executed to build node D. (d) With inner node 3, the
root node has been reached, and the final BVH2 is completed with root node G via repeated merging.
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Algorithm 1 Outer loop of H-PLOC algorithm: The Morton code-based bottom-up tree traversal
is only used to combine neighboring ranges of cluster candidates. If after fusing two ranges, the
number of candidates exceeds half the WAVE_SIZE, a PLOC++-based merging step is applied,
which builds the final BVH2 and reduces the number of candidates below the threshold again.
5 8=3%0A4=C�� returns the ID of the parent node (see Apetrei [2014]).
1: � ← [�0, .., �#−1] ⊲ BVH2 nodes, first # entries are set to leaf bounding boxes
2: "� ← ["�0, .., "�#−1] ⊲ Morton codes sorted in ascending order
3: � ← [�0, .., �#−1] ⊲ cluster indices extracted from sorted Morton codes
4: ?�� ← [?��0, .., ?��#−1] ⊲ BVH2 parent IDs, initialized to −1
5: for 8 ← 0 to # − 1 in parallel do
6: ! ← 8, ' ← 8 ⊲ Morton code range [L;R]
7: ;0=4�2C8E4 ← 8 < #

8: while 10;;>C (;0=4�2C8E4) do ⊲ Do bottom-up traversal as long as active lanes in wave
9: if ;0=4�2C8E4 then
10: if 5 8=3%0A4=C�� (!, ', # ,"�) = ' then
11: ?A4E8>DB�� ← 0C><82�G2ℎ0=64 (?�� ['], !)
12: if ?A4E8>DB�� ≠ −1 then
13: B?;8C ← ' + 1
14: ' ← ?A4E8>DB��

15: end if
16: else
17: ?A4E8>DB�� ← 0C><82�G2ℎ0=64 (?�� [! − 1], ')
18: if ?A4E8>DB�� ≠ −1 then
19: B?;8C ← !

20: ! ← ?A4E8>DB��

21: end if
22: end if
23: if ?A4E8>DB�� = −1 then
24: ;0=4�2C8E4 ← 5 0;B4

25: end if
26: end if
27: B8I4 ← ' − ! + 1
28: 5 8=0; ← ;0=4�2C8E4 and B8I4 = # ⊲ Reached top of Morton tree, need to finish BVH2
29: F0E4"0B: ← 10;;>C ((;0=4�2C8E4 and (B8I4 >,�+�(�/�/2) or 5 8=0;)
30: whileF0E4"0B: do
31: ;0=4�� ← 2>D=C)A08;8=6/4A> (F0E4"0B:)
32: ?;>2"4A64 (;0=4��, !, ', B?;8C, 5 8=0;, � , �) ⊲ Wave-based PLOC++ (Algorithm 2)
33: F0E4"0B: ← F0E4"0B: & (F0E4"0B: − 1) ⊲ Done with current lane
34: end while
35: end while
36: end for

number of active work items per wave - will drop accordingly. We restore high wave utilization
for cluster merging and compaction by sequentially processing each active work item (path) of
a given wave and its corresponding cluster list using the full wave through wave intrinsics (see
Algorithm 2). As the merging threshold (the maximum length of a cluster list per inner LBVH node)
is equal to half the wave size, the concatenated cluster lists will not exceed the wave size, and all
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merging and compaction iterations can be done within the wave. The cluster merging starts only
when an inner LBVH node accumulates more than half the wave size clusters, hence only nodes
higher up in the LBVH tree will trigger the process.

We store the list of cluster indices per LBVH node at the beginning of the corresponding Morton
code range (see Algorithm 1), e.g., for an LBVH node which covers the range [!;'] its left child
covers range [!; B?;8C − 1] while its right child covers [B?;8C, '], and the cluster indices are stored
at the beginning of respective ranges. Each cluster directly corresponds to a BVH2 node, and
consists of a 3-dimensional AABB and two indices referring to its children (32 bytes total). For the
nearest neighbor search in the cluster merging phase, we rely on a wave-based version of PLOC++’s
search algorithm, which only requires RS cluster comparisons for a search radius of RS. The nearest
neighbor search is the most inner-loop of the H-PLOC algorithm and, therefore, the most time
critical. The number of clusters on which the nearest neighbor search operates varies between half-
and full-wave size, and we measured an average wave utilization of 66%. We increase efficiency
during nearest neighbor search further by caching all cluster list data in registers or shared local
memory to reduce access latency and avoid global memory accesses. We allocate new clusters using
a global atomic counter but reduce contention by sharing atomic increment requests per wave.
In terms of memory consumption for N primitives H-PLOC needs 64-bit Morton codes (# × 8

bytes), parent IDs (# × 4 bytes), cluster indices (# × 4 bytes) and the BVH2 (# × 2 × 32 bytes). It is
worth mentioning that most of these arrays can be placed into already allocated memory regions.
For example, the BVH2 data can typically be placed into the memory region assigned for storing
the primitive leaf data.

Algorithm 2 Inner loop of H-PLOC algorithm, entire wave performs nearest neighbor search and
cluster merging for a single list of clusters to maximize parallelism.The maximum length of the clus-
ter list is bound by the,�+�_(�/�. ;>03�=3824B loads up to,�+�_(�/� elements from cluster
indices � into per wave storage�� and BC>A4�=3824B stores them into � again. 5 8=3#40A4BC#486ℎ1>A

and<4A64�;DBC4AB�A40C4�+�2#>34 are wave-optimized versions of algorithms described in Ben-
thin et al. [2022].
1: function plocMerge(;0=4��, !, ', B?;8C, 5 8=0;, � , �)
2: �� ← [��0, ..,��,�+�_(�/�−1] ⊲ per wave cluster indices
3: ## ← [##0, .., ##,�+�_(�/�−1] ⊲ per wave nearest neighbors
4: !BC0AC ← F0E4�A>0320BC (!, ;0=4��)
5: '4=3 ← F0E4�A>0320BC (', ;0=4��)
6: !4=3 ← F0E4�A>0320BC (B?;8C, ;0=4��)
7: 'BC0AC ← F0E4�A>0320BC (B?;8C, ;0=4��)
8: =D<!45 C ← ;>03�=3824B (!BC0AC , !4=3 , � ,��, 0) ⊲ stored in �� at offset 0
9: =D<'86ℎC ← ;>03�=3824B ('BC0AC , '4=3 , � ,��, =D<!4 5 C) ⊲ stored in �� at offset =D<!45 C

10: =D<%A8<B ← =D<!45 C + =D<'86ℎC

11: )�'�(�$!� ← F0E4�A>0320BC (5 8=0;) = CAD4 ? 1 : ,�+�_(�/�/2
12: while =D<%A8<B > )�'�(�$!� do
13: ## ← 5 8=3#40A4BC#486ℎ1>A (=D<%A8<B,��, �, (��'��_'���*()
14: =D<%A8<B ←<4A64�;DBC4AB�A40C4�+�2#>34 (=D<%A8<B, ##,��, �)
15: end while
16: BC>A4�=3824B (=D<%A8<B,��, � , !BC0AC ) ⊲ store =D<%A8<B indices into � at offset !BC0AC
17: end function
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3.4 Conversion to Wide BVH
To achieve high performance, modern ray tracing frameworks and hardware implementations
rely on wide BVHs. Nonetheless, the BVH construction algorithms almost exclusively produce
binary BVHs that need to be converted to the wide format as a post-process. Surprisingly this
conversion, which has non-negligible cost, has not been addressed much in previous work. We
opt for a top-down traversal approach by Wald et al. [2008] that replaces the child with the largest
surface area by its grandchildren, reducing the probability of overlapping child bounds. This can be
implemented iteratively on the GPU with one kernel launch per level of the wide BVH. Nonetheless,
similarly to PLOC++, this host-device synchronization dependency chain introduces unnecessary
overhead. Hence, we propose an algorithm performing the conversion in a single kernel launch.
Our approach is based on maintaining an array of index pairs, where the first index references

a binary BVH node and the second an index where the corresponding =-wide BVH node will be
stored. Initially, the array contains a single pair referencing the root nodes of the respective binary
and =-wide BVH. When the kernel is launched, each work-item is assigned a fixed position inside
the index pair array, e.g., work-item 0 processes the first entry, work-item 1 the second, etc. The
initial state of each slot is set to invalid, and each work-item continuously checks whether its array
slot contains a valid entry. When a work-item picks up a valid entry, it traverses the binary BVH
at the given index in a top-down manner (opening the child with the largest area) until n subtree
indices are found. These n subtree indices are used to create an =-wide node at the given position in
the =-wide BVH. The n subtree indices with n newly allocated =-wide BVH indices are re-inserted

8
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2 3

0 1 2 3 4 5 6 7 8 9

(a)

8

0 1 5 4

0 1 5 4 1

0 2 5 4 1 3

0 2 4 4 1 3 5 6 7

0 2 4 8 1 3 5 6 7 9
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Fig. 2. Illustration of our fast top-down binary to =-wide BVH conversion algorithm, for the case = = 4. (a)
BVH2 is traversed top-down, always opening up the child with the largest area. Opened-up children are used
to fill the =-wide BVH node, in our example, a 4-wide BVH. The BVH2 nodes that correspond to the final
4-wide inner and leaf nodes are highlighted. (b) For efficient work distribution, we maintain an array of work
assignments; each work-item is assigned a specific slot in this array, which continuously polls for work. The
conversion starts with placing the BVH2 root node at slot 0. There, the first work item picks up the node and
traverses the underlying tree in a top-down fashion, always opening up the child with the largest area. If
= = 4 nodes have been accumulated, a 4-wide BVH node is created and the children are inserted in the work
distribution array. The first child is inserted back into the slot of the current work-item; hence, = − 1 items
are added (atomically) to the end of the current list. The process continues until the work distribution array
contains only leaf nodes.
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into the index pair array. The first entry is stored at the position assigned to the current work item,
and the remaining n-1 entries are appended after the last position in the index pair array. Note that
the number of entries in the index pair array always grows, and no empty slot remains. The process
continues until all entries in the array point to binary BVH leaf nodes. The number of binary BVH
leaf nodes corresponds to the number of primitives the binary BVH is built over (one primitive
per leaf), and we start the kernel with exactly this number of work-items. In order to guarantee
forward progress, the work groups which make up the dispatch must start execution in order. If
the underlying implementation does not guarantee this, it can be enforced by using an atomic
increment to assign an increasing index to each work group as it is started. As each work-item
reuses its original slot to store one of n newly added entries, it continues to make forward progress,
potentially processing multiple entries until a binary BVH leaf node is reached, which cannot be
opened further. The conversion algorithm is depicted in Figure 2.
Instead of always assigning one primitive to a =-wide BVH leaf node, SAH-based collapsing of

binary BVH subtrees is possible with our conversion algorithm as well. Assuming SAH cost per
inner binary BVH node is available, the algorithm can always decide to stop the opening process
and emit a =-wide BVH leaf node, referencing multiple primitives.

4 Results
For our evaluation, we implemented H-PLOC in the HIP programming language (ROCm 5.7.3).
All tests were conducted on an AMD® Radeon™ 7900 XT GPU and Ubuntu Linux 22.04. We
compare H-PLOC against four other BVH build algorithms: PRBVH [Meister and Bittner 2018b],
ATRBVH [Domingues and Pedrini 2015], PLOC++ [Benthin et al. 2022], and LBVH [Apetrei 2014]
in terms of BVH build times and quality using a collection of scenes with varying complexity (see
Table 1). Extended Morton codes as proposed by Vinkler et al. [2017] have been used, although
the impact on the SAH cost has mostly been negligible. For a better apples-to-apples comparison,
we integrated the publicly available source code of each algorithm into a single code base, while
paying careful attention that source code changes did not have any negative performance impact.
In general, a complete BVH build consists of multiple phases: setup, quadification (triangle-

pairing), computing an AABB per primitive, Morton codes generation (based on AABBs) and
sorting, fast binary BVH construction, and conversion to the final hardware-specific =-wide BVH
format. Table 1 shows a breakdown of build times, BVH quality, and cost of different BVH build
phases. Note that different BVH build algorithms only affect the binary BVH construction phase
and, to some minor extent, the initial setup phase. All other phases share the same code. As our
target ray tracing hardware is based on quads (triangle-pairs), we perform an initial quadification
step, which does a parallel search for triangle pairs sharing a common edge. Triangle pairing
reduces the number of primitives which are passed to the downstream phases by 20-50%. The actual
BVH build time reduction depends on the build algorithm but is typically in a range of 10-60%. The
final BVH format is a hardware-specific 4-wide BVH. Hence the conversion phase converts from a
2-wide to a 4-wide BVH using the algorithm described in Section 3.4. All BVH build algorithms use
64-bit Morton codes, combining the code and index into a 64-bit integer value, where 64-bit integer
sorting is done by an optimized OneSweep radix sort [Adinets and Merrill 2022] implementation.

When comparing GPU BVH build algorithms, we first look at the two extremes: LBVH in terms of
performance and PRBVH with respect to quality. LBVH just relies on the Morton codes to construct
a binary BVH (bottom-up) in a single kernel launch. This is considered the speed-of-light in terms
of binary BVH construction [Meister and Bittner 2022] thanks to the small amount of work the
algorithm does, i.e., the child-parent node relation is already given by the Morton codes, and the
BVH node bounding boxes just need to be propagated up the tree. Also, it does not need an atomic
counter for inner node allocation, only for going up the Morton code tree. Due to relying on Morton
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Table 1. Timings of BVH build phases (and relative percentage of total cost), total build time in ms, absolute
build performance in mega-triangles per second and relative against LBVH (fastest build), and relative BVH4
SAH quality and path tracing run-times (PT ) vs. PRBVH (highest quality). BVH build phases: setup andMorton
code generation (Misc), finding triangle pairs (Quad ), sorting of 64-bit Morton codes (Sort ), construction of
binary BVH (BVH2), and conversion to a =-wide BVH (Conv ). H-PLOC provides similar BVH4 SAH quality and
path tracing run-times (PT) as PLOC++ or ATRBVH, while consistently outperforming LBVH. H-PLOC comes
within 15% of LBVH build performance, outperforming ATRBVH by 2.7 − 3.6× and PLOC++ by 1.1 − 1.8×.

Misc Quad Sort BVH2 Conv Total Build Perf BVH4
[ms] [ms] [ms] [ms] [ms] [ms] MTris/s SAH PT

Sponza 0.3M Triangles
PRBVH 0.10 (<0.1%) 0.19 (<0.1%) 0.09 (<0.1%) 632 (99.9%) 0.19 (<0.1%) 633 0.4 (<0.01) 1.00 1.00
ATRBVH 0.09 (3.4%) 0.19 (7.2%) 0.09 (3.8%) 2.09 (78.9%) 0.18 (6.8%) 2.65 105 (0.25) 1.10 1.11
PLOC++ 0.12 (9%) 0.19 (15.0%) 0.09 (6.8%) 0.71 (53.4%) 0.20 (15.8%) 1.33 208 (0.49) 1.11 1.10
LBVH 0.09 (13.6%) 0.19 (30.3%) 0.09 (13.6%) 0.08 (12.1%) 0.19 (30.3%) 0.66 422 (1.0) 1.33 1.28
H-PLOC 0.10 (14.9%) 0.19 (25.7%) 0.09 (12.2%) 0.16 (21.6%) 0.20 (25.7%) 0.74 377 (0.89) 1.09 1.11

Buddha 1M Triangles
PRBVH 0.14 (<0.1%) 0.3 (<0.1%) 0.3 (<0.1%) 2686 (99.9%) 0.39 (<0.1%) 2686 0.4 (<0.01) 1.00 1.00
ATRBVH 0.12 (2.6%) 0.3 (6.4%) 0.3 (6%) 3.61 (76.8%) 0.39 (8.3%) 4.70 231 (0.27) 1.05 1.04
PLOC++ 0.15 (6.9%) 0.3 (13.9%) 0.3 (13.9%) 1.04 (48.1%) 0.37 (17.1%) 2.16 503 (0.59) 1.09 1.06
LBVH 0.12 (9.5%) 0.3 (23.4%) 0.3 (23.4%) 0.2 (15.6%) 0.36 (28.1%) 1.28 851 (1.0) 1.14 1.09
H-PLOC 0.15 (10.1%) 0.3 (20.1%) 0.3 (20.1%) 0.37 (25.5%) 0.37 (24.8%) 1.49 728 (0.86) 1.08 1.05

Hairball 2.9M Triangles
PRBVH 0.20 (<0.1%) 0.6 (<0.1%) 0.26 (<0.1%) 5808 (99.9%) 0.90 (<0.1%) 5810 0.5 (<0.01) 1.00 1.00
ATRBVH 0.18 (2.2%) 0.6 (7.3%) 0.26 (3.2%) 6.18 (75.1%) 1.00 (12.3%) 8.23 350 (0.28) 1.04 1.04
PLOC++ 0.21 (6.2%) 0.6 (18.2%) 0.26 (7.6%) 1.44 (42.2%) 0.88 (25.8%) 3.41 842 (0.69) 1.06 1.04
LBVH 0.17 (7.2%) 0.6 (26.3%) 0.26 (11%) 0.42 (17.8%) 0.89 (37.7%) 2.36 1214 (1.0) 1.10 1.08
H-PLOC 0.21 (7.9%) 0.6 (22.6%) 0.26 (9.8%) 0.66 (24.9%) 0.90 (34.7%) 2.65 1084 (0.89) 1.05 1.04

Bistro 3.8M Triangles
PRBVH 0.22 (<0.1%) 1.3 (<0.1%) 0.33 (<0.1%) 12108 (99.9%) 1.41 (<0.1%) 12112 0.3 (<0.01) 1.00 1.00
ATRBVH 0.22 (1.5%) 1.3 (8.9%) 0.33 (2.3%) 11.25 (77.6%) 1.41 (9.7%) 14.5 267 (0.26) 1.07 1.08
PLOC++ 0.26 (4.6%) 1.3 (23%) 0.33 (6%) 2.33 (41.5%) 1.37 (25%) 5.61 691 (0.68) 1.07 1.07
LBVH 0.22 (5.8%) 1.3 (34.3%) 0.32 (8.4%) 0.62 (16.2%) 1.35 (35.3%) 3.82 1013 (1.0) 1.24 1.28
H-PLOC 0.26 (5.9%) 1.3 (29.9%) 0.33 (7.5%) 1.13 (25.8%) 1.35 (30.8%) 4.38 882 (0.87) 1.07 1.07

San Miguel 10M Triangles
PRBVH 0.74 (<0.1%) 2.3 (<0.1%) 0.7 (<0.1%) 28297 (99.9%) 4.80 (<0.1%) 28306 0.4 (<0.01) 1.00 1.00
ATRBVH 0.67 (2.1%) 2.3 (7.1%) 0.7 (2.2%) 23.94 (74.1%) 4.69 (14.5%) 32.30 309 (0.30) 1.10 1.18
PLOC++ 0.80 (5.8%) 2.3 (16.6%) 0.7 (5.1%) 5.31 (38.5%) 4.68 (34%) 13.78 724 (0.71) 1.10 1.17
LBVH 0.67 (6.8%) 2.3 (23.8%) 0.7 (7.1%) 1.64 (16.6%) 4.55 (46.1%) 9.88 1009 (1.0) 1.35 1.37
H-PLOC 0.80 (7%) 2.3 (20.2%) 0.7 (6.1%) 2.9 (25.3%) 4.74 (41.4%) 11.45 871 (0.86) 1.10 1.17

Powerplant 12.7M Triangles
PRBVH 0.81 (<0.1%) 2.5 (<0.1%) 1.09 (<0.1%) 38007 (99.9%) 5.59 (<0.1%) 38017 0.3 (<0.01) 1.00 1.00
ATRBVH 0.77 (2.2%) 2.5 (7%) 1.09 (2.2%) 25.38 (72%) 5.54 (15.8%) 35.23 362 (0.32) 1.11 1.10
PLOC++ 0.98 (6.8%) 2.5 (17.3%) 1.09 (7.6%) 4.44 (31%) 5.32 (37.2%) 14.31 892 (0.80) 1.12 1.11
LBVH 0.76 (6.6%) 2.5 (21.8%) 1.09 (9.4%) 1.86 (16.2%) 5.26 (45.9%) 11.46 1112 (1.0) 1.38 1.30
H-PLOC 0.98 (7.7%) 2.5 (19.7%) 1.09 (8.5%) 2.75 (21.6%) 5.39 (42.4%) 12.71 1004 (0.90) 1.12 1.13

codes to define the binary BVH, the LBVH has the worst SAH quality, in particular for scenes with
highly varying triangle sizes. All other build algorithms perform more work to improve the BVH
quality, which increases build cost and, therefore, reduces BVH build performance. LBVH is used
as the BVH build performance reference. PRBVH, based on parallel insertion, achieves the highest
BVH quality (lowest SAH cost) and is used as a BVH quality baseline. PRBVH ’s build times are
generally too high for real-time usage and are more suitable for offline rendering.
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Fig. 3. Relative BVH build performance (against LBVH) vs path tracing performance (against PRBVH) for
all BVH build algorithms and example scenes (data extracted from Table 1). H-PLOC provides similar path
tracing performance than ATRBVH and PLOC++, while coming close to the BVH build performance of LBVH.

Besides the performance and quality extremes, we also compare against two other popular
real-time GPU BVH build algorithms: ATRBVH and PLOC++. The quality settings of ATRBVH and
PLOC++ were adjusted to make them more comparable to H-PLOC, e.g., both PLOC++ and H-PLOC
use the same search radius of 8 for the nearest neighbor search. ATRBVH ’s treelet size was set to
20, and the number of iterations was set to 1 to achieve high quality with a single kernel launch.

4.1 BVHQuality and Build Times Comparison
In terms of final BVH quality, LBVH has 1.10 − 1.38× worse SAH cost than the PRBVH reference
and thus the lowest quality overall. ATRBVH, PLOC++, and H-PLOC provide better quality and are
only 1.04 − 1.12× worse than PRBVH. Compared to each other, they provide roughly similar BVH
quality across the different scenes, which also means H-PLOC’s merging of wave-sized cluster lists
does not impose a reduction in the SAH cost compared to standard PLOC++, which iterates over
far longer lists of clusters. In terms of the run-time performance impact the generated BVH has, we
measured the time for tracing incoherent ray distributions generated by a path tracer. As BVHs
constructed by our chosen algorithms exhibit quality differences for different parts of a given scene,
we use multiple viewpoints and average the results. Compared to PRBVH, the relative run-time ray
tracing overhead correlates mostly to the relative SAH cost, but depending on the scene and the
selected views can differ slightly. Note that the SAH metric does not take into account memory
access, caching effects, or traversal order which contribute to the difference to relative SAH cost.

While PRBVH provides the best BVH quality, it has at least two orders of magnitude higher build
time than the other approaches. It is worth mentioning that H-PLOC does not seem to benefit from
using a search radius larger than 8 as the SAH cost of the final 4-wide BVH basically stays flat with
increased radius: for the given example scenes the maximum measured SAH cost variation was
within 1-2%. A similar low SAH cost variation has been observed when using cluster lists larger
than the GPU’s wave size. Varying the cluster list size between 32 and 1024 work items showed a
maximum SAH cost variation of 1.5%.

For the two competing approaches suitable for real-time, ATRBVH and PLOC++, the construction
of the BVH2 and the conversion to an =-wide BVH are the most expensive phases. It is worth
mentioning that ATRBVH uses many additional input buffers and costly distance matrix evaluations,
which increase the algorithmic complexity and, therefore, run-time cost. The more efficient PLOC++
has about 3-5× lower BVH2 construction times than ATRBVH. The build time for PLOC++ is also
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Fig. 4. H-PLOC (green) and LBVH (red) build times for building a 4-wide BVH over up to a million (random)
instances (TLAS use case). With an increasing number of instances, the build time overhead of H-PLOC vs.
LBVH (blue) quickly drops below 20% and settles around 15%. H-PLOC builds a high-quality 4-wide BVH over
a million instances in just 2.21 ms vs 1.96 ms for a lower quality LBVH.

dominated by the BVH2 construction, which is 31-54% of the total time. The BVH2 cost for H-PLOC,
is 1.6-4.4× lower than PLOC++ and even 8.2-13× lower than ATRBVH, which brings the relative
cost of BVH2 construction to below 26% of the total build time. This mostly shifts the bottleneck
from BVH2 construction to the conversion phase. The BVH2 build time for H-PLOC is at most 2×
higher than LBVH, and the overall build time is only about 15% higher, while the SAH quality is
similar to PLOC++ and ATRBVH (see Figure 3).
In terms of absolute build performance, H-PLOC achieves 0.8-1 billion triangles per second for

the four largest models. The variation directly correlates to the average number of iterations of the
H-PLOC’s inner loop (see Algorithm 2) to reduce the number of clusters to at most half the wave
size. This iteration count varies between 1.8 for the faster builds (∼1 GTriangles/s) and 2.3 for the
slower builds (∼0.8 GTriangles/s). The inner loop takes 50-60% of the total kernel run-time.

Today’s ray tracing frameworks like DXR [Microsoft 2020] and Vulkan exhibit a two-level accel-
eration structure hierarchy: a single top-level (TLAS) built over multiple bottom-level acceleration
structures (BLAS). Building a BVH4 over a triangle-based scene (as in Table 1) corresponds to
building a BLAS, while a TLAS requires building a BVH4 over instances. An instance, in our case,
requires 128 bytes (storing world-to-object transform and its inverse). Figure 4 shows H-PLOC and
LBVH build times with an increasing number of randomly sized and placed instances. Similar to
the BLAS case, the build time overhead of H-PLOC over LBVH for a larger number of instances
quickly approaches 15%. In terms of absolute build times, H-PLOC builds a BVH4 over half a million
instances in 1.1 ms and requires just 2.2 ms for a million instances.

4.2 Comparison to ATRBVH and AAC
One could observe certain similarities with ATRBVH [Domingues and Pedrini 2015] and AAC [Gu
et al. 2013] since they both rely on the Morton curve and agglomerative clustering. In this section,
we describe the major algorithmic differences.

ATRBVH is an optimization algorithm improving an existing BVH, typically constructed by
LBVH but not necessarily limited to LBVH. In contrast, H-PLOC concurrently constructs the LBVH
partitioning and uses it as a guide to build the final (binary) BVH in a single unified pass. Notably,
the LBVH partitioning in H-PLOC is dynamically constructed on the fly, bypassing the need to write
its nodes to global memory. Furthermore, ATRBVH engages in redundant efforts as restructured
treelets exhibit substantial overlap. The algorithm assembles and restructures a treelet, ascends one
level, and repeats the process, resulting in the top segment of the prior treelet being completely
rebuilt, with only the lower part remaining unchanged. Another difference is the nearest neighbor
search. ATRBVH caches distances between clusters in the distance matrix stored in the shared
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local memory, while H-PLOC searches in the cluster lists sorted along the Morton curve and then
propagates the merged cluster lists up the hierarchy. Last, ATRBVH necessitates larger temporary
storage than H-PLOC (refer to Section 3.3), accommodating distance matrices, SAH costs, and
additional auxiliary buffers.

Although the computational steps ofH-PLOC andAAC have a closer resemblance,AAC is tailored
for multi-core CPUs, maintaining a substantial large computational state on the system memory
stack, which would be infeasible for GPU builders. In contrast, H-PLOC is specifically designed for
many-core GPUs, requiring only minimal state. Additionally, AAC requires a downward pass to
find the LBVH partitioning while H-PLOC constructs the whole BVH in a single bottom-up pass.
Similarly to ATRBVH, AAC caches the distances between clusters in a distance matrix.

5 Conclusion and Future Work
H-PLOC uses LBVH bottom-up construction as a guide and combines it with efficient PLOC++-based
merging of wave-sized lists of clusters. This results in tremendous efficiency advantages, as H-PLOC
outperforms competing binary BVH build algorithms by several factors while providing similar
BVH quality. Considering the total BVH build cost, including all phases, the overhead of H-PLOC
to the speed-of-light reference LBVH is only about 15%, while offering significantly better BVH
quality. Combined with its implementation simplicity, which we believe is a strong argument for
adoption, and the efficient binary to =-wide BVH conversion, H-PLOC could be the algorithm of
choice for high-quality real-time BVH construction. In the future, we are interested in incorporating
insertion-based refinement in the binary BVH construction phase to further lower the quality gap
to PRBVH.
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