2025 TAIPEI

Geometric Integration for
Neural Control Variates

Daniel Meister and Takahiro Harada

AMD




Computer Graphics Problems T

Many problems in computer graphics can be formulated as integral equations
« Geometric processing (e.g., Laplace equation)
 Light transport (e.g., the rendering equation)

L(x,w,) = Le(X,w,) + / fr(xX,w;, wo)L(X,w;) cos b, dw;

w; €

No analytic solution in general - numerical integration

All problems can be formulated as a general integral on some domain

F = [Df(sc)dzr:



Monte Carlo (MC) Integration 2025 TAIPET

Numerical integration widely used in computer graphics
« High-dimensional problems
» Robust to discontinuities

« Converges to the true solution
« Many samples needed to surpass the variance (noise)
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Variance reduction techniques
* Importance sampling
« Control variates
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Monte Carlo with Control Variates

Approximate the integrand and integrate only the residual integral

« We assume & = 1 from now on

F:/Df(zc)da;':aGJr/Df(a:)—ozg(:c)das G=Lg(az)daz

/) F(x) - ag(x)
g(x) A
ag(x) F(x) —g(x)

Courtesy of [Muller et al. 2020]

Neural networks are universal approximators. Why not use them as control variates?
Integrating neural network is challenging :



PI'iOI' WOl'k - NOl'ma"Zing FIOWS [Muller et al. 2020]

* Normalized probability distribution
« Scaled by another neural network
» Scale trivially corresponds to G

A chain of coupling layers (small neural networks)
 Invertibility limits expressiveness
« We do not need an inverse mapping

* Does not work well in low dimensions
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Courtesy of [Brubaker et al. 2020]
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Prior Work — Automatic Integration wieeta. 2o et 200

* Neural network represents antiderivative
* A pair of networks: grad and integral networks
» Grad network is constructed based on the integral
network
» Requires autodiff and higher order derivatives
» The integral network must be differentiable enough
» Non-zero n-th order derivatives for n-dimensions

» Grad network can be huge
« Difficult training
« Size scales with the number of dimensions
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Courtesy of [Lindell et al. 2021]



Contribution 7025 TAIPET

Control variates using the MLP with piece-wise linear activation functions (RelLU)
« Analytic integration of the MLP as a geometric problem

« Employing tools from computational geometry to solve it in 2D

 Light transport applications

An MLP with piece-wise linear activation functions
represents a piece-wise linear (affine) function

MLP = Multilayer perceptron
ReLU = Rectified linear unit
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Geometric Integration

« Split integration domain into disjoint subdomains
Such that the function is affine on the subdomain

Integrate the corresponding affine function on each subdomain

G = / d:c—Zf dm-i/piyi(m)dm QDi:D ﬁzw

Subdomains are convex regions
 Intersection of half-planes
« Half-planes correspond to inequalities in the activation functions

The resulting function is always affine
 Affine functions are closed under composition
« Composition of linear layers and piece-wise linear activation functions

Finding the subdomains is the challenging part



Ng(iﬁ,y) = ¥

Geometric Integration — Example

MLP with one hidden layer and RelLU activation functions

* Integration domain is a unit square

« Each neuron corresponds to a half-plane (an oriented line)
« The resulting function depends on the neuron activations

2
C2

az(aoz + boy + co) + c2
ba(arz + by +c1) + 2
Las(apz + boy + o) + ba(arx + b1y + ¢1) + o

We need to think in terms of affine functions instead of numbers!
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Ni(z,y) = a1z + biy+ 1
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Arrangement of Lines

* Well-studied problem in computational geometry

» Find a planar subdivision induced by given a set of lines in 2D
« Vertices — points where lines meet (no more than (3))
- Edges - line segments between points (no more than N?)
« Faces — convex regions containing no lines (no more than (5) + N +1)
* N is the number of lines (the number of neurons in the a hidden layer)
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Doubly-Connected Edge List (DCEL)

» A data structure for storing a planar subdivision
« Topological information
* Incremental construction — “2D ray tracing”

vertex edge
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new vertex new edge
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new face —
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Q\ twin(e)

next(e)
half-edge e
l\ origin(e)
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Multiple Hidden Layers 2025 TAIPEI

* The half-planes are mixed based on the activation from the previous layer
 Different activations result in different half-planes in each face

* Recursive processing by traversing “very wide tree”
« The number of neurons in a layer corresponds to the branching factor

We can relatively easily integrate the corresponding affine
function once the subdomain is determined

Please, see the details in the paper
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Traversal Algorithm

« The goal is to visit all bottom-most “leaf” faces
« Simple stackless logic

* No need to store the whole subdivision
 Once the face at any level is processed Y
» The allocated DCELs can be reused for other faces 4

 Allocating only one DCEL per layer

Missing details -

* The lines are oriented (half-planes) \

» Track the resulting affine function (for the integration) /I
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Triangle Integration a
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n my

« Convexregions can be trivially o — / J(2,y) dy de = / a;z + by + ¢; dy dz
triangulated ; Dig( ) dy ;; Ti.; Y Y

* One of the variable needs to be

independent

* [terative (nested) integrals computed
as 2x 1D integrals

1 1—a’
A
2AT/ ] ax' +b'y +c dy da’ = %(a' + b+ 3c)
0o Jo

/

* Integrating over a unit triangle Y , Y
t V3 h(vs)

* Mapping back to the original one
« The mapping is an affine function
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Applications: Analytic Functions
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» Proof-of-concept implementation in PyTorch
 MLP with 2 hidden layers with 32 neurons each with RelLU

« Automatic integration [Li et al. 2024] as a reference method
* Relying on the autograd in PyTorch
« Sigmoid instead of ReLU
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Disk Function SRR

« Both methods are competitive
 The main difference is due to a different activation function

Disk
10° - —— Monte Carlo
— AI-NCV
—— GI-NCV (ours)
NR
\V
(‘\]>\
- "
()]
=
i
S 1073 4
. —
@\
10—4_
10° 10! 10 10°
Samples [-]

16



Gaussian Function

2025 TAIPEI
« Both methods are competitive
* The main difference is due to a different activation function
\ ‘ Gaussian
—_— 10~ 4 —— Monte Carlo
(@)l — AI-NCV
>\ i —— GI-NCV (ours)
| 107- 4
(@ 10-3 4
T
5 1077 5
S 10-6
<
B 10-7 4
=4
o 160 161 162 163
Samples [-]

17



2025 TAIPEI

Applications: Light Transport

Solving many integrals (e.g., one per pixel)

A single neural network 9(z,y | @)
« 2 hidden layers with 32 neurons each

Arbitrary additional inputs ¢
* Fixed w.r.t integration
« Arbitrary encoding

Integrating a 2D slice of a higher dimensional function

Parameter Symbol Encoding Input dim. Output dim.
Area light sample (x,y) Identity 2 2
Incoming direction Wi Local hemisph. coords. 2 2

Position X Hashgrid 3(2) 2 x4

Outgoing direction Wo Sph. coords. / one-blob 2 2 x4

Surface normal n(x)  Sph. coords. / one-blob 2 2 x4
Diffuse albedo o(x) Identity 3 3
Surface roughness p(x) Identity 1 1
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Implementation Details 2025 TAIPEI

Pre-train - Geometric Integration = Integrate residual integral using MC

In-house HIP renderer & MLP framework
« HIPRT 2.5 for ray tracing
« Adam optimizer
+ Weight & biases in FP32
« Exponential moving average for weights & biases

Geometric integration as a separate kernel
» Persistent threads to reduce memory requirements

One training sample per pixel
AMD Radeon PRO W7900 (48GB)
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Control Variates and Importance Sampling

Analytic integration domain must match integration of domain of the residual integral

Probability density might be zero where the original integrand is zero

MLP might provide arbitrary values, which are included in the analytic integration

But these samples might be missed in the residual integral due to importance sampling

Included in the
analytic integration

?

Importance
sampling PDF

\

Non-zero MLP
values

But missed in the
residual integral

/

Original integrand

0 >
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Ambient Occlusion 6
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 |ntegration over upper hemisphere

A0k | )= [ Teesrlnmbd )

w; €1 T

dw@-

« Approximating integrand
V(x,wi | r)(n(x) - w;)

s

g(wi | x,n(x)) = f(x,wi [ ) =

 Direction in local hemispherical coordinates
» Transform to the local space
» Hemi-spherical coordinates (height & azimuth)
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Ambient Occlusion - Bistro

Comparison to vanilla Monte Carlo using different number of training iterations

— Monte Carlo

— GI-NCV 256 {ours}
GI-NCV 512 {ours)
GI-NCV 1024 {ours)
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Samples per pixed [-]
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Direct Lighting

* Integration over an area light source

Lgired (Xa wo) = 4 fr (X, Wx—ry s wo)Le(Y7 wy—>x)G(Xa Y)V(Xa Y) dy
NAS

» Approximating integrand

g(z,y | xX,w,,n(x),0(x), p(x)) ~ f(x,v+ ze; +yes,w,) = f(X,y,w,)

f(X, Yy, wo) — ffr (X, Wx—ry) wo)Le(Y> wy—>x)G(Xa Y)V(Xa Y)a
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Direct Lighting — Cornell Box

Comparison to vanilla Monte Carlo using different number of training iterations

i — Monte Carlo
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Global lllumination

 |ntegration over upper hemisphere

LO(XawO) — Le(X7 wo) =+ /-EQ f’r(xa Wi, UJO)LZ'(X,(.U?;)(H(X) ) w%) dwz

« Approximating integrand

g(w; | X, wo, n(x),0(x), p(x)) & £(x, Wi, wo) = fr(x, wi, wo) Li(x, w;) (n(x) - w;)
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Indirect Lighting — Bistro
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Comparison to vanilla Monte Carlo using different number of training itertations
~REm
|
J \

v
Samples per pixel [-]

Even though the MLP approximate radiance field well,
control variates does not bring any improvement due to noisy estimates

26



2025 TAIPEI

Global lllumination — Noisy Estimates

» Approximating 7D function (position and two directions)
« We need to train the whole integrand compared to radiance caching

» Notice that the ground truth data are not available
 Incidence radiance is a nested integral itself
* MLP can still learn the function from one-sample noisy estimates
« Thanks to Adam optimizer and exponential moving average (tracking history ~ averaging)

—

g(w; | X, w,, n(x),0(x), p(x)) ~ f(x,w;,wo) = fr(X,w;,ws) Li(x,w;)(n(x) - w;)

The same argument
but different
function values
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Noisy Estimates - Experiment

Integrating a simple function

1 pl
flx) = / f 8ryzdydz = 2z
0o Jo

109 4

Control variate (almost perfect) 10-1 4

g9(z) =0.9- f(z) 1o

. . g 10
Noisy estimates vs. ground truth values

f(z) =8zy;z; = f(z) =2z 1074

107°
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—— Monte Carlo
— Control variates (noisy estimates)
—— Control variates (ground truth)
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Discussion and Limitations

Same as automatic integration limited to low dimensions (2D)

« Cannot use full path tracing (with Russian roulette)
* Possible to extend to higher dimensions in theory but it would be prohibitively expensive

Same as other control variates methods difficult to use importance sampling
 Analytic integration covers the whole integration domain (i.e., the unit square)

Analytic integration is expensive (both in time and space)
« Amortize the cost through many samples
« Cannot use in real-time rendering

Cannot use non-linear encoding for the integration domain

« To keep the lines straight (not to become curvy) Monte Carlo  GI-NCV (ours)
SPP [ 32768 1024 + 18432
MSE [] 4.54-107° 4.53-107°
Render time [s] 136 78
Train time [s] - 33
Integration time [s] - 10
Inference time [s] - 34
Total time [s] 136 155
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* Analytic integration of MLP with piece-wise linear act. functions
* Viable alternative to the automatic integration

* Integration formulated as geometric problem in 2D
 Practical algorithm relying on tools from computational geometry
» Looking at MLPs from a different perspective

« Applications in light transport
* Reducing variance using control variates
« Many limitations for practical use

Future work
* Importance sampling using the subdivision
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Thank you for your attention!
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Backup Slides
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The Number of Faces

» The particular number depends on the weights & biases

« Some lines might be completely outside the unit square

 An does not introduce new faces
85 faces

2 hidden layers / 32 neurons ‘

A\ R
\ 52 e

b
g
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Ambient Occlusion - Bistro 7025 TAIPET

Using the same samples for training and integration (correlated samples)

\ g I-mﬁ |
GI-NCV (ours) '
SEmE amut

8 s Wi W s W s

Monte Carlo — HorteTars
107 w— GENCV 512 (our sl

GENCV 1024 {ours)
GHNCV 2048 {ours)

1’ 107 104
Samphes per pisel |-]
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Direct Lighting — Cornell Box

Using the same samples for training and integration (correlated samples)

e —

2048 + 6144 SPP 8192 SPP

MSE87-10~* MSE 16.9-10~°
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Correlated Samples

(I) = mT_ —{Imc) + m:L_ ~(lov), E[()]=E [mT—nUMC)] +E [mn (ICV>] )
1 i f(a:z) - mi 1+ n G+ = f(xm+%) i ($m+@')]’
(Imco) = oy 2 p(z;) m+n m+n Z P(Trmti)
" . mF n f(xmai) — 9(Tmai)
<ICV>:G+lzf($m+i)_g(33m+é) _m_|_n+m_|_n(G+]E Z p($m+z) ])’
e P(@rm+i) mF (m+n)F

= + (G+F-G)=

m-+n m-+n m-+n

= F.
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