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Figure 1: The San Miguel scene rendered in the Embree path tracer [WWB∗14]. Visualization of the number of traversal steps for primary
rays using BVHs from different builders (the red color corresponds to 100 traversal steps per ray). From left-to-right: Embree SAH, our
PHR-Fast, our PHR-HQ, and Embree Fast-Spatial. The bottom row shows the build times. Our PHR-Fast method provides 1.6× lower build
time than Embree SAH, while the PHR-HQ method has 2× lower build time than Embree Fast-Spatial. In both comparisons, the builders
provide equivalent ray tracing performance.

Abstract
We propose a novel algorithm for construction of bounding volume hierarchies (BVHs) for multi-core CPU architectures. The
algorithm constructs the BVH by a divisive top-down approach using a progressively refined cut of an existing auxiliary BVH.
We propose a new strategy for refining the cut that significantly reduces the workload of individual steps of BVH construction.
Additionally, we propose a new method for integrating spatial splits into the BVH construction algorithm. The auxiliary BVH
is constructed using a very fast method such as LBVH based on Morton codes. We show that the method provides a very good
trade-off between the build time and ray tracing performance. We evaluated the method within the Embree ray tracing frame-
work and show that it compares favorably with the Embree BVH builders regarding build time while maintaining comparable
ray tracing speed.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Raytracing—I.3.5 [Computer Graph-
ics]: Object Hierarchies—I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—

1. Introduction

Bounding volume hierarchies (BVHs) are one of the most efficient
spatial data structures for organizing scene primitives. Most con-
temporary ray tracing implementations use BVHs for accelerat-
ing ray scene intersections. This makes the task of constructing
high-quality BVH, i.e. a BVH leading to a low number of inter-
section evaluations thus high ray tracing speed, very important.
This problem has been studied very intensively and currently a
number of very efficient solutions exist that lead to high-quality
BVHs [SFD09, Wal12a, KA13, GHFB13, GBDAM15]. Some tech-

niques are even applicable for fully dynamic scenes as they can
construct the BVH in real-time for moderately complex scenes. As
a general rule of thumb, a higher quality BVH means longer build
time.

The BVH can be constructed in O(n logn) time even for the rela-
tively expensive full sweep method based on surface area heuristic.
Recently several methods were proposed which lead to BVHs with
a lower cost (i.e. expected number of intersections) than that of full
sweep SAH [Ken08, BHH13, KA13, GHFB13, GD16]. While the
SAH cost model correlates with the actual ray tracing performance,
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Aila et al. [AKL13] identified the supremacy of top-down builders
regarding the correlation of the cost and ray tracing performance.
In other words, being able to quickly construct a BVH using a top-
down algorithm, with its quality comparable to the state-of-the-art
BVH optimization methods, boosts the overall rendering perfor-
mance of ray tracing.

In this paper, we revisit the idea of Hunt et al. [HMF07], who
proposed the build-from-hierarchy method using the scene graph
structure to accelerate kD-tree construction. We apply the build-
from-hierarchy in a different context: we build a BVH instead of a
kD-tree and use triangle soup instead of scene graph as the input.
Both points bring our method closer towards the current state-of-
the-art ray tracing frameworks and in turn to the actual usage in
practice. It has not been clear whether build-from-hierarchy can
compete with other methods when a scene graph (i.e. the input hi-
erarchy) is not available. We show that the method is very competi-
tive even with simple non-SIMD implementation and consequently
we believe that our paper will renew the interest in the build-from-
hierarchy techniques in general.

Starting from a triangle soup, we first build an auxiliary BVH
using a very fast BVH builder. This gives us quick access to the
scene structure, i.e. a coarse description of the spatial distribution
of the primitives. At the core of the method, we use a new adaptive
method for accessing the auxiliary BVH during the construction of
the final one. To further improve the quality of the constructed BVH
for ray tracing, we propose a fast way of integrating spatial splits in
the BVH construction process. We show that this approach is com-
petitive with the fastest available BVH builders for multi-core ar-
chitectures, such as AAC [GHFB13], Bonsai [GBDAM15], or Fast-
Binning [Wal12a]. An excerpt of a comparison with existing meth-
ods implemented in the Embree ray tracing framework [WWB∗14]
is shown in Figure 1.

2. Related Work

Bounding volume hierarchies have a long tradition in rendering
and collision detection. Kay and Kajiya [KK86] designed one of
the first BVH construction algorithms using spatial median splits.
Goldsmith and Salmon [GS87] proposed the measure currently
known as the surface area heuristic (SAH), which predicts the ef-
ficiency of the hierarchy during the BVH construction. The vast
majority of currently used methods for BVH construction use a
top-down approach based on SAH. A particularly popular method
is the fast approximate SAH evaluation using binning proposed by
Havran et al. [HHS06] and Wald et al. [Wal07, Wal12b].

A number of parallel methods for BVH construction have been
proposed for both GPUs and multi-core CPUs. Lauterbach et
al. [LGS∗09] proposed a GPU algorithm which uses the Morton
code based primitive sorting. Hou et al. [HSZ∗11] proposed partial
breadth-first search construction order to control the GPU memory
consumption. Pantaleoni and Luebke [PL10] proposed the HLBVH
algorithm that combines Morton sorting with SAH based tree con-
struction. Garanzha et al. [GPM11] improved on this method by
using SAH for the top part of the constructed BVH.

Karras [Kar12] and Apetrei [Ape14] proposed GPU-based meth-
ods for efficient parallel LBVH construction. These techniques

achieve impressive performance but construct a BVH of a lower
quality than the SAH based builders.

Significant interest has been devoted to methods which construct
high-quality BVHs albeit at increased computational time com-
pared to the fastest builders. Walter et al. [WBKP08] proposed
to use bottom-up agglomerative clustering. Gu et al. [GHFB13]
used parallel approximative agglomerative clustering for accelerat-
ing the bottom-up BVH construction. Ganestam et al. [GBDAM15]
proposed the Bonsai method, which uses a two-level BVH con-
struction scheme similar to HLBVH and subsequent tree prun-
ing. In their follow-up work, they show how to integrate spatial
splits [SFD09] into the Bonsai algorithm [GD16].

Hunt et al. [HMF07] proposed to construct a kD-tree from the
scene graph hierarchy. Kensler [Ken08], Bittner et al. [BHH13],
and Karras and Aila [KA13] optimize the BVH by performing
topological modifications of the existing tree. These approaches
allow decreasing the expected cost of a BVH beyond the cost
achieved by the traditional top-down approach.

Due to the widespread availability of SIMD instructions on to-
day’s CPU architectures, it is beneficial to construct multi-BVHs,
i.e. hierarchies with a higher branching factor. Wald et al. [WBB08]
and Dammertz et al. [DHK08] designed methods for construct-
ing and traversing the multi-BVH, which are particularly important
in combination with modern ray tracing frameworks such as Em-
bree [WWB∗14]. Further improvements of the multi-BVH can be
achieved by adapting it to a particular ray distribution as suggested
by Gu et al. [GHB15].

The paper is further structured as follows: Section 3 presents an
overview of the proposed method, Section 4 presents the details of
the proposed method, Section 5 gives the results and their discus-
sion, and Section 6 concludes the paper.

3. Efficient Top-Down BVH Construction

3.1. Handling Large Data

Constructing an efficient BVH is an optimization problem equiv-
alent to hierarchical clustering. The core issue for efficient BVH
construction is the large amount of data that has to be organized at
the beginning of the computation. A number of successful meth-
ods gain speed and efficiency by simplifying the initial phase of
the computation through quick partitioning of the data into sub-
sets that are later processed using a more sophisticated algorithm.
This is the case of the HLBVH [GPM11] that uses Morton codes to
cluster the data, and thus to reduce the search space for partition-
ing. Similarly, the Bonsai algorithm [GBDAM15] uses simple spa-
tial median partitioning to establish independent data clusters that
are processed using more involved partitioning schemes. The AAC
algorithm [GHFB13] uses a simple top-down subdivision scheme
based on Morton codes, which allows for efficient bottom-up clus-
tering phase.

Another example of handling the initial scene complexity is the
build-from-hierarchy method proposed by Hunt et al. [HMF07],
which was implemented in their innovative Razor ray tracing sys-
tem. The method uses explicit knowledge of scene hierarchy to re-
duce the complexity of kD-tree construction significantly.
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We follow the path visible in the above-discussed techniques
with the aim of providing a highly scalable and efficient BVH con-
struction algorithm. Similarly to HLBVH, Bonsai, or AAC, we use
Morton code based spatial sorting to establish the initial scene par-
titioning. Following Hunt et al. [HMF07], we use the hierarchy
resulting from the initial partitioning to construct the final BVH.
We make substantial modifications to this phase of the algorithm
that aim to better distribute the workload among different levels
of the hierarchy and to efficiently perform spatial splits during the
BVH construction. Despite the increased quality of the final BVH,
we keep the second phase of the algorithm at O(n) complexity by
bounding the working set when creating each interior node, simi-
larly to Hunt et al. [HMF07].

3.2. Algorithm Overview

Our algorithm starts by constructing an auxiliary BVH that pro-
vides a scalable description of the scene structure. We use the
LBVH algorithm [LGS∗09] implemented on multi-core CPU ar-
chitecture. The auxiliary BVH serves as a valuable hierarchical
representation of the structure and distribution of objects. By es-
tablishing and progressively refining the cuts of the auxiliary BVH,
we can efficiently construct the final BVH by a thorough analysis
and partitioning of these cuts (see Figure 2).

AUXILIARY BVH FINAL BVH

...

LBVH

PHR

...

Figure 2: Overview of the method. Fast LBVH builder constructs
the auxiliary BVH, which is used to build the final high-quality BVH
using progressive hierarchical refinement (PHR).

The construction of the final BVH starts by finding the initial
cut of the auxiliary BVH. This cut is formed as the smallest set
of nodes which spans the BVH horizontally and the nodes have
their surface smaller than a particular threshold. At each step of
the algorithm, the nodes on this cut are examined and we search
for the best partitioning of these nodes into two sets. We use full
sweep SAH in all three axes to find the partitioning. As the size
of the cut is small compared to the scene size, this search is very
fast. Then the cut is partitioned using the best split found and two
new cuts are formed. These cuts are refined according to a new
threshold corresponding to the reached subdivision depth. Should a
node on the cut be refined, we just replace the node in the cut with
its children. The algorithm then continues by applying the method
recursively in the new subtrees with the corresponding refined cuts.
The illustration of the main steps performed on the auxiliary BVH
cut, when building a node in the final BVH, is shown in Figure 3.

4. Progressive Hierarchical Refinement

This section describes the proposed method in detail by presenting
and discussing its individual components. For now, let us assume
that we have an auxiliary BVH at our disposal. The details of con-
structing the auxiliary BVH will be given at the end of this section.

4.1. Finding the Initial Cut

Our method starts with identifying the nodes of the auxiliary BVH
that will form a cut of the hierarchy. This cut contains nodes that are
just below a given threshold on their surface area. We will discuss
how to determine this threshold in Section 4.3. The threshold is
set in a way that it provides an initial cut with size below a given
hard bound (e.g. 2048 nodes); which is, in general, several orders
of magnitude lower than the total number of scene primitives.

The algorithm for finding the cut uses a priority queue and a
simple test that checks whether the visited node has a surface area
larger than a threshold. If this is the case, its children are put into
the priority queue. If this is not the case or the node is a leaf it is ap-
pended to the cut. When there are no more nodes to visit or the cut
together with the unprocessed nodes have reached the maximum
cut size, we terminate the cut search.

4.2. Splitting the Cut

The core of the method is splitting the current BVH cut into two
disjoint sets. As the cut is small, we can use a relatively expensive
evaluation of the best split without significant performance penalty.
Thus, we use full-sweep SAH in all three axes to subdivide the cur-
rent cut. We sort the cut along all three axes based on node cen-
troids. Then for all axes, we perform a sweep that computes a cost
of the node subsets on the left and right of the sweep plane. For a
given position i of the sweep plane, the cost is given as

C(i) = SL(i)nL(i)+SR(i)nR(i), (1)

where SL(i) and SR(i) are the surface areas of the bounding boxes of
left and right subsets and nL(i) and nR(i) are the numbers of nodes
on the left and on the right from the sweep plane, respectively. Then
we select the axis and the position of the sweep plane that yield the
minimum cost.

There is a minor difference from the traditional SAH cost eval-
uation: we use the numbers of nodes nL(i) and nR(i) instead of the
numbers of triangles in the subtree [HMF07]. We discovered that
tracking the numbers of nodes provides slightly better results for
most tested scenes (in a range of a few percent). We expect that this
is because the numbers of nodes better reflect the complexity of hi-
erarchically organizing the corresponding scene part than the raw
triangle numbers. Using the numbers of triangles yields a cost cor-
responding to the node being a leaf, which is obviously not the case
for nodes higher in the hierarchy. The node counts, on the contrary,
are somewhere between the actual triangle counts and final (but yet
unknown) costs of the subtrees being constructed. Moreover, the
numbers of nodes nR(i) and nL(i) for current i are readily available
values, whereas the triangle counts rely on storing them as addi-
tional information for each node of the auxiliary BVH.
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Figure 3: Illustration of the hierarchical cut refinement. (left) When computing the split, we determine the optimal subdivision of the current
cut (cut0) based on full sweep SAH. That results in two sets of nodes on the current cut which correspond to the nodes that will be contained
in the left and right subtree of the subdivided cut (shown in green and blue). (center) The nodes on the cut are reordered and split into two
disjoint cuts. (right) The new cuts (cut1 and cut2) are formed by hierarchical refinement based on their surface area.

4.3. Refining the Cut

By subdividing the BVH cut into two parts, the number of nodes
in each of the two new cuts is reduced. Repeating this step several
times would lead to cut size of 1, and thus we would lose all the in-
formation about the scene structure that the cut can provide. Hence
we refine the cut to maintain its properties. Hunt et al. [HMF07]
suggested to keep a constant size of the cut that is specified by the
user (they used the cut size 500 for the results in the paper). While
this is a valid approach that maintains the linear complexity of the
algorithm [HMF07], this technique becomes expensive especially
for medium to high BVH depths, where the algorithm has to cope
with a large number of cuts with their sizes comparable to the num-
ber of primitives in their subtree.

Instead, we propose an adaptive way of refining the cut that aims
to progressively reduce the cut size, and thus to better balance the
computational effort among different levels of the BVH. This ap-
proach is similar to adapting the number of clusters handled by the
AAC algorithm [GHFB13] in their bottom-up BVH construction.

Our method is based on thresholding the surface area of nodes
forming the cut while taking into account the current depth. The cut
is refined as follows: for each node forming the cut, we compare
its surface area with the threshold. If the surface area of the node
is greater than the threshold, the node is replaced by its children.
Otherwise, the node is kept in the cut. When refining the cut, we
intentionally descend just one level in the tree. This simplifies the
implementation as no stack is needed to refine the cut.

We propose to use an adaptive threshold that is based on the
depth of the currently computed node in the BVH. The threshold is
computed as

td =
S

2αd+δ
, (2)

where S is the surface area of the scene bounding box, d is the cur-
rent depth, α and δ are parameters of the method. The δ parameter
determines the size of the initial cut for d = 0. The α parameter de-
scribes how quickly will the cut size shrink with increasing depth.
The setting of these parameters depends on the desired trade-off
between the build time and the trace speed. We used two settings
of these parameters: α = 0.5 and δ = 6 for fast builds (PHR-Fast)
and α = 0.55 and δ = 9 for high-quality builds (PHR-HQ).

Note that the formula is inspired by regular subdivision of the
scene into non-overlapping voxels. In this case, the size of the voxel

in depth d is given as Sd ≈ S

2
2
3 d

. The bounding boxes of the input

hierarchy do not follow this ideal subdivision case, but keeping the
working set of nodes in the cut with areas staying close to this func-
tion proved beneficial for the performance vs. quality trade-off of
the algorithm.

An example of the lengths of the cut obtained using the proposed
adaptive threshold function is given in Figure 4. As we show and
discuss in Section 5, the adaptive threshold leads to consistently
better results than a predefined cut size originally proposed by Hunt
et al. [HMF07].
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Figure 4: The average cut size at different BVH depths for the San
Miguel scene. PHR-HQ (green) works on substantially larger cuts
than PHR-Fast (purple). The adaptive threshold function implies
larger cut size at the top of the tree, which has a crucial impact on
the overall tree quality.

4.4. Spatial Splits

Spatial splits proposed by Stich et al. [SFD09] can improve the
BVH quality significantly. However, their evaluation is relatively
expensive. We make use of the availability of the limited size BVH
cut and propose a novel technique for spatial splits evaluation.

When splitting a cut, we also evaluate its result when applying
spatial splits on the cut nodes. This contrasts with the traditional
spatial splits evaluation which is performed directly on geometric
primitives (triangles).

The actual spatial split evaluation is done using an algorithm
similar to the kD-tree construction. We sort the boundaries of the
node bounding boxes and perform plane sweep while evaluating
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the split cost. Note, however, that in this case, the classification of
the node into the left and right subtree is not based on the centroid
of the node but on the two extents of the node bounding box in the
given axis. A node is classified as lying in both left and right sub-
trees if the sweep plane intersects its bounding box. For each cost
evaluation, we clip the left and right bounding boxes by the sweep
plane which potentially reduces the respective areas (SL and SR).
Thus, we obtain

CS(i) = Sc
L(i)n

∗
L(i)+Sc

R(i)n
∗
R(i), (3)

where Sc
L(i) and Sc

R(i) are surface areas of clipped bounding vol-
umes of nodes intersecting the left and right volumes defined by
the sweep plane, n∗L(i) and n∗R(i) are the numbers of nodes inter-
secting these left and right volumes.

If the spatial split cost CS is lower than the cost C, we perform
a spatial split. We actually do not subdivide any bounding boxes
nor primitives themselves. Instead, we just clip the two bounding
boxes for the left and right subsets using the split plane. The clipped
bounding box is always passed over with the current cut to apply
clipping also in the deeper levels of the tree. More precisely, when
the cost function is evaluated deeper in the tree, the bounding boxes
of the nodes being processed are always clipped by the clipping
bounding box for the given cut that was passed from the parent
nodes.

If spatial splits are used, it can happen that some nodes on the
refined cut do not intersect the clipped bounding box passed over
with the current cut. These nodes are simply skipped, i.e. they are
not placed into the refined cut. An illustration of a spatial split ap-
plied on the current cut is shown in Figure 5.

To avoid performing spatial splits at lower parts of the tree where
their benefit is usually low, we use a simple rule proposed by Stich
et al. [SFD09]. Spatial splits are performed only when the ratio of
the surface area of the currently constructed node and the bounding
box of the scene is above a given threshold (e.g. 1e-3).

The proposed spatial splits method is very simple and requires
minimal modifications of the other parts of the code. The results
show that this method, although being very fast, improves on the
trace performance up to 20%.

4.5. Multi-BVH

The trace performance of the BVH can be improved by increasing
the branching factor of interior nodes, which results in a shallower
BVH [WBB08, DHK08]. This is particularly important for SIMD
optimized ray tracers. We construct the multi-BVH by postponing
the formation of interior nodes in the final BVH until n children
are available or no child interior node exists. If the current number
of child nodes is lower than n, the algorithm processes the largest
available interior child node first [WBB08].

4.6. Parallelization

The parallelization of the method is relatively straightforward. We
use a shared work queue which contains entries representing un-
constructed parts of the tree. Each entry contains an index of a node
in the new BVH and an array representing the corresponding cut in

*

Figure 5: Illustration of a spatial split. A spatial split is selected
for nodes forming the current BVH cut. Two subsets of nodes are
formed for the left and right subtree, and the bounding volumes of
these subsets are clipped by the splitting plane. The node denoted
by the * symbol is split by the split plane and therefore it is placed
in both subsets. Left and right subsets are refined to form new cuts.
Particularly, the node * is replaced by its children (see the images
in the bottom). Note that for the left subset, one of the child nodes
(shown in red) does not intersect the currently clipped bounding
volume, and thus it is discarded from the cut in this branch. The
clipped bounding box can thus be shrunk to reflect this.

the auxiliary BVH. A thread pops an entry from this queue, finds
a subdivision of the cut and if the node does not become a leaf,
it stores the right child in the shared queue so that other threads
can fetch this entry and process it. The left branch is processed im-
mediately by the same thread unless it is a leaf node. Note that to
prevent large synchronization overhead, we only store the nodes in
the shared work queue up to a given depth (e.g. 12) or when we find
out that some threads are idle (using a counter of active threads).

4.7. Constructing the Auxiliary BVH

We use parallel sorting based on Morton codes and subsequent bi-
nary search to identify the nodes of the auxiliary BVH. We first
compute Morton codes for all triangles. For that, each thread is
assigned a continuous span of dn/te triangles, where n is the num-
ber of scene triangles and t is the number of threads. For parallel
sorting, we use approximate parallel bucket-sort. In each thread,
we insert the primitives into k buckets. We used k = 212 that cor-
responds to sorting according to the highest 12 bits of the Mor-
ton code. Then the buckets are merged in parallel by evaluating
dk/te buckets per thread. The auxiliary BVH is constructed using a
shared work queue. Each thread fetches a node from the queue and
finds the intervals corresponding to its children by identifying an
entry with a change in the highest bit of the Morton code within the
current interval [LGS∗09]. Finally, bounding boxes are updated by
a parallel recursive procedure using synchronized access to node’s
data. We use an atomic counter for each node: the thread that visits
the node as the second node will update node’s bounding box using
the bounding boxes of its children.
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5. Results

We implemented the proposed method in C++ using standard lan-
guage constructs. In the current implementation, we did not exploit
SIMD instructions. We performed a series of tests comparing the
build times, BVH costs, and the ray tracing performance of our
method and several reference methods on nine test scenes. As a
reference, we used our implementations of the method of Hunt et
al. [HMF07] (denoted Hunt-50, Hunt-500) and the AAC method of
Gu et al. [GHFB13] (AAC). We also evaluated the methods avail-
able in the latest version of Embree ray tracer, i.e. Embree 2.11
(Embree SAH, Embree Fast-Spatial, Embree Morton). The Hunt-
50 and Hunt-500 methods used a fixed length cut of the length of
50 and 500, respectively. The cut of a given length is established by
partial sort and subsequent refinement of the largest nodes, which
proved more efficient than using a priority queue. We did not use
the fast-scan and lazy-build also proposed by Hunt et al. [HMF07]
as these are specific to kD-tree construction and the Razor system.
For the AAC method, we used parameters corresponding to AAC-
Fast settings [GHFB13]. For all methods, we used a 4-ary multi-
BVH [WBB08, DHK08].

The trace times were evaluated using a simple path tracer pro-
vided as a tutorial in Embree. The times are computed as average
times for three different representative views of each scene using
1024×1024 resolution and 1 sample per pixel. The measurements
were performed using 16 working threads on a PC equipped with
2×Intel Xeon E5-2620. The measured results are summarized in
Table 1. Below we discuss the results from different points of view.

5.1. Construction Speed

The table shows that the lowest build times among the reference
methods are achieved by the Embree Morton method, usually fol-
lowed by Hunt-50, AAC, Embree SAH, Hunt-500, and Embree
Fast-Spatial. Our PHR-Fast method provides build times usually
between Embree Morton and Hunt-50; thus, it is the second fastest
builder tested. The PHR-HQ method has build times mostly be-
tween Embree SAH and Hunt-500. The PHR-HQ build times are
about twice lower than the build times of Embree Fast-Spatial.

On scenes with a simple structure (e.g. Buddha), the PHR-
Fast and PHR-HQ methods perform comparably to Hunt-50 and
Hunt-500, respectively. On larger scenes, PHR-Fast and PHR-HQ
achieve about 20% lower build times than Hunt-50 and Hunt-500
while leading to slightly higher quality BVHs.

5.2. BVH Quality and Ray Tracing Performance

The overall highest BVH quality in terms of trace times was
achieved by the Embree Fast-Spatial method. The PHR-HQ method
closely follows in half of the test scenes. In two tested scenes (Hair-
ball and Soda Hall), PHR-HQ actually provided marginally bet-
ter trace performance. In four test scenes, PHR-HQ provides about
10%-20% lower trace performance than Embree Fast-Spatial.

The PHR-Fast method provides trace performance usually be-
tween Embree Morton and Embree SAH while being closer to Em-
bree SAH in terms of trace speed. The build times on the other hand

are closer to Embree Morton, which makes the PHR-Fast method a
good candidate for interactive applications.

We provide a graphical comparison of build time vs. trace time
for all tested methods in Figure 6. The figure also sketches the
Pareto front known from multi-objective optimization [RW05] that
indicates the methods which will perform superior to the others
for some combination of build time vs. trace time, i.e. the num-
ber of rays traced. According to the measurements, the Pareto front
is formed by Embree Morton, PHR-Fast, Embree SAH, PHR-HQ,
and Embree Fast-Spatial methods.
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Figure 6: The relative performance of different methods with re-
spect to Embree SAH as the reference method and averaged over
all test scenes.

5.3. Influence of Spatial Splits

Spatial splits provide trace speedup particularly for large architec-
tural scenes with primitives of different sizes. The influence of spa-
tial splits can be seen by relating to the Hunt-50 and Hunt-500
methods, which do not employ spatial splits. The trace speedup due
to our fast spatial splits method is in the range of 2% and 20%. Spa-
tial splits had the largest positive impact in the San Miguel scene.

Our node level spatial splits could also be combined with triangle
presplitting [KA13]. We have not yet evaluated this possibility, but
we consider it an interesting topic for future work.

5.4. Parameters

Prior to determining the settings for PHR-Fast and PHR-HQ, we
conducted a series of measurements to evaluate the dependence
of the method on the α and δ parameters. We tested values of α

slightly below 2
3 (an explanation of this threshold is given at the

end of Section 4.3). We determined the range of measured δ val-
ues by balancing the amount of work done at each subdivision step
with the potential of finding a precise enough split while focusing
on the splits near the root. In particular, we tested all the combina-
tions of α and δ from the sets {0.45, 0.5, 0.55, 0.65} and {5, 6, 7,
8, 9, 10}, respectively. From these measurements, we selected the
two characteristic settings (PHR-Fast, PHR-HQ) that roughly de-
fined the Pareto front for all scenes. In a selected subset of scenes,
the representative parameter settings can be slightly different, and
thus better performance/quality ratios could be achieved. For ex-
ample, in San Miguel and Power Plant scenes, the optimal values
are α = 0.5, δ = 7 for the high quality scenario (saving about 35%

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



J. Hendrich et al. / Parallel BVH Construction using Progressive Hierarchical Refinement

build time while actually decreasing the trace time by about 3%).
In Conference and Hairball scenes, it is α = 0.5, δ = 5 for the fast
build scenario (saving 9% and 33% build time, respectively, while
keeping the same trace time).

5.5. Using PHR with Other Builders

We have tested the proposed method with other BVH builders for
constructing the initial BVH (AAC and Binning-SAH); the results
were generally worse concerning Pareto optimality. For example,
using AAC allowed us to build a BVH with a slightly lower cost (a
few percent) for the same parameter settings of PHR; using differ-
ent PHR parameters, a similar quality BVH could be constructed
faster.

5.6. Discussion and Limitations

The results indicate that the method is configurable in a large range
of build time vs. BVH quality trade-off. On one side, this is a pos-
itive feature; on the other hand, this makes it difficult to find opti-
mal parameters (α and δ) for the PHR method. We used two repre-
sentative settings, but we observed that in a number of scenes set-
ting different values to these parameters would provide better build
times or trace performance while not significantly altering the other
value.

The PHR-Fast method seems a good fit for interactive applica-
tions. In fact, we could avoid constructing the auxiliary BVH from
scratch and reuse it over multiple frames by simple refitting to fur-
ther reduce the build time of PHR-Fast. This strategy was already
suggested by Hunt et al. [HMF07], but its verification in practice
remains an open topic.

The current implementation of the method uses a moderately op-
timized C++ code, but we did not yet exploit SIMD constructs. We
expect that by exploiting SIMD we could further lower the build
times while keeping the same BVH quality. On a similar note, the
sweep SAH algorithm used at the core of our method could be re-
placed by SIMD optimized binning SAH.

6. Conclusion and Future Work

We proposed a novel scalable algorithm for BVH construction on
multi-core CPU architectures. The algorithm employs a two-phase
process: first it constructs an auxiliary BVH using the LBVH algo-
rithm, followed by constructing the final BVH using progressively
refined cuts of the auxiliary BVH. The progressive refinement of
the cut size is driven by adapting surface area thresholds based on
the current depth of the constructed node. We provided a simple
way of integrating spatial splits in the BVH construction process.

The results show that the method yields superior build perfor-
mance compared to the high-quality builders implemented in the
Embree framework while closely matching their ray tracing per-
formance. In comparison with the strategy of Hunt et al. [HMF07]
adapted to BVH construction, our method brings about 20% build
time improvement while also providing a few percent improvement
in the trace performance.

There are a number of avenues for future work. We see a great

potential in the integration of static and dynamic content by us-
ing the progressive hierarchical refinement to merge a high-quality
static hierarchy and dynamically constructed auxiliary BVH. This
technique could have immediate applications in the video game
technology. The proposed method scales in a large build time vs.
quality range. Finding optimal parameters for a given scene and
target frame rate in interactive applications remains an open prob-
lem.
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