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Figure 1: Visualization of a subset of 64 consecutive rays from the third bounce of the wavefront path tracer. The numbers
below the images show trace performance for that bounce on the RTX 2080 Ti GPU using RTX trace kernels: original incoher-
ent rays (left), rays reordered using origin-direction sorting key (middle), rays reordered using the origin-termination sorting
key (right)

ABSTRACT
We study ray reordering as a tool for increasing the performance
of existing GPU ray tracing implementations. We focus on ray
reordering that is fully agnostic to the particular trace kernel. We
summarize the existing methods for computing the ray sorting keys
and discuss their properties. We propose a novel modification of a
previously proposed method using the termination point estimation
that is well-suited to tracing secondary rays. We evaluate the ray
reordering techniques in the context of the wavefront path tracing
using the RTX trace kernels. We show that ray reordering yields
significantly higher trace speed on recent GPUs (1.3 − 2.0×), but to
recover the reordering overhead in the hardware-accelerated trace
phase is problematic.
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1 INTRODUCTION
Ray tracing is a popular rendering paradigm that allows us to sim-
ulate light propagation by tracing rays and reconstructing the cor-
responding light paths. Many rays have to be traced to compute a
high-quality image. The initial ray tracing methods, such as Whit-
ted style ray tracing, use rays that exhibit a high degree of coher-
ence within a given stage of the algorithm. However, the currently
employed techniques such as path tracing produce increasingly
incoherent ray sets due to scattering on diffuse and glossy surfaces.
Tracing incoherent rays is much more costly than tracing coherent
ones due to higher memory bandwidth, higher cache miss rate,
and computational divergence. A number of techniques were pro-
posed to mitigate this issue that usually use the wavefront path
tracing combined with ray reordering, packet tracing, or ray space
hierarchies.

The core of the ray tracing based algorithms is evaluating ray
scene intersections, which is often referred to as the trace kernel. In
our paper, we revisit the basic problem of sorting rays to produce
coherent subsets of rays in order to accelerate the trace kernel. We
focus on methods that are fully agnostic to the particular trace ker-
nel and the employed acceleration data structure. Such techniques
already appeared in the literature [Aila and Karras 2010; Costa et al.
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2015; Moon et al. 2010; Reis et al. 2017], but we feel there is a need
for their thorough comparison and deeper analysis.
We aim at the following contributions:

• We summarize previously publishedmethods for ray reorder-
ing suitable for GPU ray tracing.

• We propose a method for sorting key computation that aims
to maximize ray coherence by using a novel termination
point estimation technique.

• We show the current limits of the trace acceleration using an
idealized ray reordering algorithm for the RTX trace kernels.

2 RELATEDWORK
Global illumination is one of the so-called embarrassingly parallel
problems since it performs the same algorithm for each sample
of every pixel. Finding the closest intersection during the trace
phase for incoherent rays, however, leads to thread and data access
divergence, which drastically reduces throughput [Wald et al. 2003].
One possibility to handle this issue is explicitly generating coherent
ray sets. For this, Szirmay-Kalos and Purgathofer [1998] proposed
global ray bundle tracing; and more recently, Nimier-David et al.
[2019] used coherent MCMC sampling. These methods can generate
highly coherent workloads with minimal overhead, but they require
a complete redesign of the underlying rendering algorithm.

Pharr et al. [1997] proposed to reorder the traversal such that all
rays are tested only against a subset of the scene to improve cache
coherence. While this is viable for very large scenes, repeatedly
loading ray data significantly increases the memory bandwidth.
Navratil et al. [2007] extended this idea by interpreting intersection
testing as a scheduling problem and proposed to split both rays and
geometry into cache blocks.

For production rendering, not only the trace kernel but also
shading might be limited by memory bandwidth. Therefore, Eise-
nacher et al. [2013] proposed to sort termination points to improve
shading performance. While this approach is designed for out-of-
core path tracing, grouping shading calculations by a material also
improves in-core performance for complex shaders. For highly
detailed scenes, Hanika et al. [2010] proposed to use a two-level
hierarchy combined with ray sorting to facilitate efficient on the
fly micro-polygon tessellation. The rays are traversed through the
top-level hierarchy, and they are repeatedly sorted to determine sets
of rays traversing the same leaf nodes of the top-level hierarchy.

When coherence among rays exists, the packet traversal [Gun-
ther et al. 2007] exploits it by forcing a SIMD processing of a group
of rays. This, on the other hand, increases inter-thread commu-
nication and synchronization. Furthermore, it assumes high ray
coherence and is significantly slower than depth-first traversal for
incoherent rays. Bikker [2012] proposed a packet traversal algo-
rithm that uses batching to improve data locality.

Current state-of-the-art GPU-based global illumination frame-
works are based on splitting the work into calculating the intersec-
tion of rays with the scene (the trace kernel) and shading [Laine
et al. 2013]. The fact that the ordering in which rays are processed
in the trace kernel can be independent of shading makes ray sorting
or reordering approaches feasible.

In a case when thread divergence occurs on GPU, the whole warp
of threads is blocked until all its rays finish the traversal. Aila and

Laine [2009] proposed to increase SIMD efficiency by replacing al-
ready finished rays with new ones from a global queue. Techniques
such as speculative traversal slightly increase the redundancy of ray
intersection tests because they work on possibly terminated rays.
But this redundancy is only virtual as the core would otherwise be
idle. Boulos et al. [2008] proposed a packet reordering for SIMD ray
tracing on CPU. Analogously, thread compaction algorithms [van
Antwerpen 2011; Wald 2011], which remove empty secondary rays,
were proposed for GPU ray tracing. Although the number of pro-
cessed warps is reduced by the factor of up to 5, the performance
only increases by up to 16% due to increased divergence.

Garanzha and Loop [2010] used breadth-first packet traversal
after a ray sorting step. They proposed the idea of sorting rays to
reduce divergence in computation using a hash-based method for
sorting the rays into coherent packets. This method was inspired
by the approach of Arvo and Kirk [1987] for CPU ray tracing. In
addition, the rays are grouped into frusta, which are further tested
against the scene as proposed by Reshetov et al. [2005]. This way,
the total number of intersection tests is reduced. While they report
impressive speedups for primary rays and deterministic ray tracing,
this does not translate to path tracing because the frusta become
too large and intersect most of the scene.

When analyzing the efficiency of ray tracing on GPUs, Aila and
Laine [2009] also evaluated a hash-based sorting criterion based on
interleaving ray origin and normalized ray direction. At that time,
the sorting overhead was too large to improve the overall rendering
time. Another ray reordering scheme addressing cache coherent
memory access for out-of-core rendering is used by Moon et al.
[2010]. They propose to sort rays using an estimated termination
point that is calculated by ray tracing a simplified scene that fits
into the main memory. The approach is, however, only suitable for
out-of-core ray tracing due to the expensive hit point estimation.
More recently, Costa et al. [2015] proposed a ray sorting approach
for ambient occlusion. Their sorting criterion is, however, mainly
based on ray direction and is suitable for short rays or shadow rays,
where the direction depends on the origin.

Considering the problem of divergent rays in most of the global
illumination algorithms, Aila and Karras [2010] proposed a hard-
ware implementation specifically designed to trace incoherent rays.
Comparing to the RTX design, however, it shows that today’s hard-
ware implementations are still optimized for coherent ray batches.

3 RAY REORDERING
Rays in three-dimensional space can be represented as points in
a five-dimensional space (ray space), where three dimensions rep-
resent ray origins, and two dimensions represent ray directions.
The ray space can be embedded into six dimensions, either for the
sake of uniformity of ray direction representation or to account for
the ray length (e.g. for shadow rays). In that case, 3D rays form a
subset of 6D space.

Reordering of incoherent rays to form a more coherent ray set
can be achieved by different strategies. We can use a multidimen-
sional divide-and-conquer strategy [Szécsi 2006], or various cluster-
ing techniques, such as the k-means clustering [Lloyd 1982]. In our
paper, we focus on techniques that use mapping of the multidimen-
sional ray space to one-dimensional space of sorting keys, which
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are ordered using a standard efficient sorting algorithm. The sorting
key computation discretizes the ray space into a set of multidimen-
sional cells and uses a particular mapping of their coordinates to
one-dimensional indices. The resulting indices form a space-filling
curve, visiting all cells of the discretized ray space. In most cases,
the Morton curve is used for simplicity of its calculation based on
simple bit interleaving [Aila and Karras 2010; Costa et al. 2015;
Lauterbach et al. 2009].

3.1 Sorting Key Computation Methods
The main aspect of the ray reordering algorithm based on space-
filling curves is the particular method used to compute the sorting
key. Several techniques for this step have already been proposed.
We briefly summarize the previously published methods, and then
we proceed to describe two novel techniques.

3.1.1 Origin. The simplest way of reordering the rays is to enforce
the coherence of their origins. This can be achieved by using the
origins as a sorting key to form a 3D space-filling curve. Resulting
subsets have coherent origins, but their directions may vary greatly.

3.1.2 Origin-Direction. To improve ray coherence, we can include
the direction into the sorting key using lower bits of the key for the
parametrized direction. This method was proposed by Reis et al.
[2017] for sorting secondary rays when constructing a ray space
hierarchy. Sorting rays using this key leads to ray subsets that have
coherent origins up to the given resolution specified by the number
of bits allocated for the origin representation in the sorting key.
If there are more rays with the same discretized origin, they will
also be ordered by their direction (lower bits of the code). For rays
with incoherent origins and directions, this technique improves ray
coherence as the directional information is also reflected. On the
other hand, the method is sensitive to the number of bits allocated
for the origins. For example, the consecutive subsets of rays may
cover the whole range of directions if too many bits were used for
origins.

3.1.3 Direction-Origin. An alternative to the technique described
above is to use the direction information in higher bits of the code
followed by the bits representing the origin. This method was pro-
posed by Costa et al. [2015] for sorting shadow and ambient oc-
clusion rays. This technique shares the problem of allocating a
reasonable number of bits for the component represented by more
significant bits of the sorting key, in this case, the direction.

3.1.4 Origin-Direction Interleaved. Another strategy of comput-
ing sorting keys uses interleaving of bits representing origin and
direction. This technique was used by Aila and Karras [2010] to
study the behavior of tracing incoherent rays. The advantage of this
strategy is that the sorting key corresponds to a multidimensional
space-filling curve that progressively encodes both origins and di-
rections. Therefore it is not sensitive to the specification of the
number of bits used for the origin and/or direction. The direction
is represented by embedding a sphere into a 3D space using nor-
malization of the directional component of the ray. The quantized
direction is prefixed with leading zeros (three zero bits for each
directional component). This effectively implies sorting based on

origins on a coarser scale and then sorting by the direction and
origins interleaved.

Aila and Laine [2009] used the quicksort algorithm with 192-bit
sorting keys on CPU in their publicly available implementations.
For practical usage, the sorting key has to be shorter (64 bits at max.)
that the sorting overhead can potentially be recovered during the
trace phase. Shorter sorting keys reduce memory traffic, and also
the number of internal passes of an underlying sorting algorithm
such as bucket sort or radix sort.

An alternative to the encoding of Aila and Karras is to use a more
compact representation of ray direction such as the octahedron
parametrization [Meyer et al. 2010]. The octahedron parametriza-
tion achieves high uniformity and high locality of its mapping to
the 1D space using the Morton curve. In our tests, we used the
original sorting key proposed by Aila and Karras, as well as its
compacted version that removes the leading zeros from the higher
bits of the code. We also tested a novel sorting key that uses the
octahedron direction parametrization.

3.1.5 Two Point Sorting Key. To achieve compact bounding vol-
umes of consecutive ray subsets, we should enforce their coherence
by forming compact sets of ray origins as well as its termination
points. Such subdivision leads to smaller overlap of disjoint ray
subsets in space, and thus to more compact bounding volumes. The
problem of this strategy is the requirement to know the ray termi-
nation point before computing the sorting key, i.e. the termination
point is what we aim to compute by tracing the ray.

The idea of exploiting the termination points was first coined
by Moon et al. [2010] who proposed to use the estimated termi-
nation points as a primary sorting key for ray tracing out-of-core
scenes. They used a termination point estimation using a simplified
geometry of the scene. The authors also report results for com-
bining the estimated termination point with origins or directions
for sorting key evaluation without describing the actual details for
the sorting key bit layout. We revisit this idea by proposing two
different termination point estimations. We also describe the actual
bit-layouts.

The Two Point method estimates the termination point and com-
putes the sorting key using the 6D point which represents the ray.
The key is constructed by interleaving bits of origin and termina-
tion points. Our layout slightly prioritizes ray origins as these are
known precisely unlike the termination points. An overview of
all aforementioned sorting key computation methods is shown in
Figure 2.

3.1.6 Termination Point Estimation. We propose two methods on
how to estimate the termination points, i.e. to estimate ray lengths.
The first method is setting a constant estimated ray length value
across the scene using a fixed ratio of the largest extent of the scene
bounding box. This method is very simple and provides surprisingly
good results. We performed a large set of measurements, and the
best overall setting was in the range of 0.2 to 0.3 of the largest scene
extent. In the results section, we use the value of 0.25 for evaluating
the fixed-length estimation variant of the Two Point method. Note
that despite using a fixed-length estimation, the reordering results
will not be the same as for the origin-direction method, in which
the directional part of the sorting key solely depends on the ray
direction independently of the ray origin.
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Figure 2: Overview of different sorting key computation methods. The figure shows bits of a 32-bit key occupied by encoding
origin (o), direction (d), estimated termination point (t), or zeros (0). The consecutive triples of o, d, and t bits use the x, y, z
component ordering, which are omitted in the table for better readability.

Using the constant value may be an issue for the teapot in the
stadium scenes. Thus, we propose a second method based on adap-
tive caching of the ray length from the previous trace passes. We
use a spatial hash table using short Morton codes as keys. In each
cell of the hash table, we store the sum of ray lengths and the ray
counts. After each trace pass, we accumulate new values into the
hash table. To recover the ray length estimate, we simply compute
a Morton code to get the corresponding cell and compute the av-
erage ray length using the values of the cell. Note that we have
to use another method for computing Morton codes to access the
hash table as we do not know the ray length at that moment. We
use 20-bit Morton codes computed with the compacted version of
Aila’s method, which correspond to the hash table with 220 cells. To
prevent getting unpredictable results by querying empty cells, we
initialize each cell of the hash table with a dummy ray with length
0.25 of the largest scene extent.

As a reference technique, we use the actual termination points
evaluated by ray tracing for computing the sorting key. This tech-
nique is not a practical use case; however, it allows us to define
the limits of the Two Point method if a precise termination point
estimation was available.

3.2 Sorting Algorithm
Sorting speed is crucial for any practical use of the ray reordering
techniques. We use parallel radix sort proposed by Merrill and
Grimshaw [2011] (a part of the CUB library), which is the fastest
sorting algorithm to date, according to best of our knowledge. The
authors of the algorithm report sorting speedup up to 6190 MKeys/s
on Tesla P100. On the RTX 2080 Ti GPU and 32-bit sorting keys,
it achieves 1600 MKeys/s for one million keys, 2100 MKeys/s for
two million keys, and 2700 MKeys/s for 4 million keys. Therefore,
sorting rays for resolution 1920 × 1080 with one sample per pixel
takes about 1 ms. The sorting is performed on key-index pairs first,
and then we use an additional pass to perform the actual ray data
reordering.

We can sort the Morton codes either globally or locally (e.g.
segments 1024 Morton codes) using a specialized kernel of the CUB
library. The local sorting can be done more efficiently; however, it
usually results in a significantly less coherent ray set.

4 RESULTS
We evaluated the discussed ray reordering techniques in the context
of wavefront path tracing using hardware accelerated RTX trace
kernel accessed through DirectX 12 and OptiX 7. The path tracer
uses next event estimation with two shadow rays per bounce with
eight samples per pixel. We use seven scenes of various complexity
[Bitterli 2016; McGuire 2017] with a single area light source with
the size of 5% of the largest scene extent (see Figure 3). All measure-
ments were performed on the RTX 2080 Ti GPU with the image
resolution of 1920 × 1080. We measured the discussed ray ordering
strategies in terms of trace performance, hardware utilization, and
ray coherence measures.

4.1 Ray Tracing Performance
Table 1 shows a summary of the trace performance results using
32-bit sorting keys. The Two Point Real method for sorting key com-
putation uses the trace kernel for the termination point estimation.
While not practical, due to the necessity to run the trace kernel
twice, it gives us the theoretical performance achievable by the
Two Point method for the hypothetical case when the termination
estimation would match the real result.

The ray reordering leads to significant speedups of the trace
kernel. For DirectX, the methods achieving the highest average
speedup are: Two Point Adaptive 1.63×, Aila Compact 1.6×, Aila
1.59×, and Octahedron 1.59× for secondary rays; Two Point Adap-
tive 1.54×, Octahedron 1.54×, Aila Compact 1.54×, and Reis 1.54×
for shadow rays. For OptiX, the methods achieving the highest av-
erage speedup are: Two Point Adaptive 1.53×, Aila Compact 1.5×,
and Aila 1.49× for secondary rays; Octahedron 1.58×, Reis 1.54×,
Origin 1.54×, and Aila Compact 1.54× for shadow rays. An exam-
ple of the influence of reordering on different bounces is shown in
Figure 4.

The Two Point Real method defines the current limits of ray
reordering for secondary rays. It provides the average speedup of
1.71× for DirectX and 1.59× for OptiX. Surprisingly, for shadow
rays other techniques (Octahedron, Reis, Aila) perform better than
the Two Point method, probably thanks to higher directional co-
herence of shadow rays.

The adaptive termination point estimation strategy yields the
best results overall (excluding the idealized Two Point Real method).
Note that the management of the hash table of ray lengths causes
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Table 1: Trace speed comparison of tested methods using 32-bit sorting keys for secondary and shadow rays (measured on the
RTX 2080 Ti GPU).

Crytek Sponza Pub Resort Living room Salle de Bain Breakfast Bistro

#triangles 262k 281k 376k 580k 1220k 1347k 2833k avg. speedup
Trace Speed [MRays/s] (secondary / shadow) in DirectX

Unsorted 1755 (1.00) / 3113 (1.00) 2228 (1.00) / 3651 (1.00) 1904 (1.00) / 4119 (1.00) 2355 (1.00) / 4345 (1.00) 2436 (1.00) / 4123 (1.00) 1086 (1.00) / 2347 (1.00) 655 (1.00) / 1805 (1.00) 1.00 / 1.00
Origin 2826 (1.61) / 4981 (1.60) 3539 (1.59) / 5663 (1.55) 2794 (1.47) / 5310 (1.29) 3500 (1.49) / 6476 (1.49) 3305 (1.36) / 6303 (1.53) 1478 (1.36) / 3084 (1.31) 1346 (2.06) / 3517 (1.95) 1.56 / 1.53
Reis 2841 (1.62) / 5000 (1.61) 3537 (1.59) / 5703 (1.56) 2844 (1.49) / 5395 (1.31) 3493 (1.48) / 6525 (1.50) 3287 (1.35) / 6315 (1.53) 1490 (1.37) / 3089 (1.32) 1379 (2.11) / 3494 (1.94) 1.57 / 1.54
Costa 2322 (1.32) / 4812 (1.55) 2815 (1.26) / 5552 (1.52) 2130 (1.12) / 5029 (1.22) 2953 (1.25) / 6356 (1.46) 2631 (1.08) / 6123 (1.49) 1471 (1.36) / 3132 (1.33) 733 (1.12) / 3286 (1.82) 1.22 / 1.48
Aila 2950 (1.68) / 5045 (1.62) 3683 (1.65) / 5750 (1.58) 2740 (1.44) / 5346 (1.30) 3593 (1.53) / 6590 (1.52) 3371 (1.38) / 6350 (1.54) 1611 (1.48) / 3092 (1.32) 1289 (1.97) / 3335 (1.85) 1.59 / 1.53
Aila Compact 2977 (1.70) / 5072 (1.63) 3699 (1.66) / 5756 (1.58) 2784 (1.46) / 5414 (1.31) 3606 (1.53) / 6554 (1.51) 3346 (1.37) / 6314 (1.53) 1616 (1.49) / 3105 (1.32) 1324 (2.02) / 3452 (1.91) 1.60 / 1.54
Octahedron 2900 (1.65) / 5018 (1.61) 3617 (1.62) / 5719 (1.57) 2844 (1.49) / 5392 (1.31) 3539 (1.50) / 6503 (1.50) 3348 (1.37) / 6286 (1.52) 1556 (1.43) / 3105 (1.32) 1349 (2.06) / 3498 (1.94) 1.59 / 1.54
Two Point 0.25 2949 (1.68) / 4940 (1.59) 3796 (1.70) / 5783 (1.58) 2656 (1.40) / 5169 (1.26) 3615 (1.53) / 6574 (1.51) 3322 (1.36) / 6330 (1.54) 1637 (1.51) / 3088 (1.32) 1134 (1.73) / 3276 (1.81) 1.56 / 1.51
Two Point Adapt. 3033 (1.73) / 5020 (1.61) 3793 (1.70) / 5768 (1.58) 2801 (1.47) / 5417 (1.32) 3709 (1.57) / 6592 (1.52) 3330 (1.37) / 6419 (1.56) 1654 (1.52) / 3099 (1.32) 1329 (2.03) / 3404 (1.89) 1.63 / 1.54
Two Point Real 3145 (1.79) / 5000 (1.61) 4042 (1.81) / 5740 (1.57) 2916 (1.53) / 5401 (1.31) 3914 (1.66) / 6567 (1.51) 3471 (1.42) / 6371 (1.55) 1676 (1.54) / 3077 (1.31) 1452 (2.22) / 3416 (1.89) 1.71 / 1.54

Trace Speed [MRays/s] (secondary / shadow) in OptiX
Unsorted 1575 (1.00) / 3049 (1.00) 1958 (1.00) / 3666 (1.00) 1503 (1.00) / 3551 (1.00) 2116 (1.00) / 4319 (1.00) 2082 (1.00) / 3782 (1.00) 867 (1.00) / 2197 (1.00) 591 (1.00) / 1774 (1.00) 1.00 / 1.00
Origin 2384 (1.51) / 5160 (1.69) 2936 (1.50) / 5862 (1.60) 2048 (1.36) / 4888 (1.38) 2950 (1.39) / 6582 (1.52) 2646 (1.27) / 6122 (1.62) 1120 (1.29) / 2921 (1.33) 1075 (1.82) / 3376 (1.90) 1.45 / 1.58
Reis 2375 (1.51) / 5236 (1.72) 2868 (1.46) / 5852 (1.60) 2156 (1.43) / 4932 (1.39) 2918 (1.38) / 6692 (1.55) 2650 (1.27) / 6072 (1.61) 1130 (1.30) / 2913 (1.33) 1102 (1.86) / 3321 (1.87) 1.46 / 1.58
Costa 2045 (1.30) / 5014 (1.64) 2430 (1.24) / 5713 (1.56) 1677 (1.12) / 4607 (1.30) 2660 (1.26) / 6518 (1.51) 2276 (1.09) / 5891 (1.56) 1183 (1.37) / 2969 (1.35) 642 (1.09) / 3173 (1.79) 1.21 / 1.53
Aila 2478 (1.57) / 5190 (1.70) 3042 (1.55) / 5921 (1.62) 2029 (1.35) / 4850 (1.37) 3004 (1.42) / 6552 (1.52) 2890 (1.39) / 6186 (1.64) 1208 (1.39) / 2908 (1.32) 1052 (1.78) / 3159 (1.78) 1.49 / 1.56
Aila Compact 2470 (1.57) / 5036 (1.65) 3111 (1.59) / 6020 (1.64) 2066 (1.37) / 4957 (1.40) 3028 (1.43) / 6599 (1.53) 2761 (1.33) / 6128 (1.62) 1194 (1.38) / 2917 (1.33) 1101 (1.86) / 3336 (1.88) 1.50 / 1.58
Octahedron 2422 (1.54) / 5200 (1.71) 2926 (1.49) / 5883 (1.60) 2106 (1.40) / 4923 (1.39) 2999 (1.42) / 6611 (1.53) 2738 (1.31) / 5982 (1.58) 1174 (1.35) / 2944 (1.34) 1094 (1.85) / 3328 (1.88) 1.48 / 1.58
Two Point 0.25 2490 (1.58) / 5096 (1.67) 3068 (1.57) / 5942 (1.62) 1972 (1.31) / 4753 (1.34) 3037 (1.44) / 6716 (1.55) 2742 (1.32) / 6016 (1.59) 1227 (1.42) / 2903 (1.32) 954 (1.61) / 3136 (1.77) 1.46 / 1.55
Two Point Adapt. 2590 (1.64) / 5181 (1.70) 3152 (1.61) / 5937 (1.62) 2036 (1.36) / 4934 (1.39) 3101 (1.47) / 6412 (1.48) 2772 (1.33) / 6038 (1.60) 1238 (1.43) / 2920 (1.33) 1092 (1.85) / 3247 (1.83) 1.53 / 1.56
Two Point Real 2649 (1.68) / 5150 (1.69) 3286 (1.68) / 5924 (1.62) 2109 (1.40) / 4861 (1.37) 3247 (1.53) / 6545 (1.52) 2880 (1.38) / 6093 (1.61) 1259 (1.45) / 2855 (1.30) 1183 (2.00) / 3207 (1.81) 1.59 / 1.56

only a marginal overhead. Cases when the termination point esti-
mation fails cause traversal divergence for rays within the same
thread group. The resulting decrease in trace performance is on
average about 8% for DirectX and 6% for OptiX and is observed as
a higher difference between the performance of the Two Point Real
and Two Point Adaptive (see the last two rows of Table 1).

The behavior of the tested methods when using sorting keys of
different bit-lengths is shown in Figure 5. The choice of bit-length
has a significant impact on sorting performance (as discussed in
Section 3.2) but does not impact the resulting ray coherence in a
way to justify using longer keys. Using 64-bit keys instead of 32-bit
keys results in 2.5× longer sort times, but has a marginal effect on
the trace performance in all tested scenes.

4.2 Profiling
As themain goals of increasing ray coherence are to increase control
flow and cache efficiency, we performed a detailed comparison for
unsorted and sorted rays using the Two Point Adaptive method
by profiling the CUDA trace kernel [Aila and Laine 2009; Aila
et al. 2012] using the NVIDIA Visual Profiler. Figure 6 shows the
efficiency for secondary and shadow rays with up to 8 bounces
for the Salle de Bain scene. The control flow efficiency increases
by up to 41% for secondary rays and up to 112% for shadow rays,
which also results in fewer memory requests for both global and
local memory. In addition, the L1 cache efficiency increases by up
to 5% for secondary rays and up to 8% for shadow rays. Because of
more efficient caching in the L2 cache, the total cache efficiency for
unsorted rays is almost identical to sorted rays. The total memory
bandwidth is, however, up to 28% lower for secondary rays and up to
60% lower for shadow rays due to the higher control flow efficiency.
Since the trace kernel is known to be mostly bandwidth bound, this
reduction is the main source for performance improvement.

4.3 Evaluating Ray Coherence
Evaluating ray coherence is a complex problem. One of the possible
approaches is to evaluate the coherence of decisions when travers-
ing a particular spatial data structure [Mansson et al. 2007]. This
idea is explicitly used by the streaming ray intersection techniques,
which perform ray reordering on the fly [Barringer and Akenine-
Möller 2014; Wald et al. 2007]. However, if on the fly ray reordering
is complicated, or if the spatial data structure is not accessible, we
rely on other means of measuring ray coherence.

One possibility is to use the surface area of the convex hull of
given ray subset as a measure of its coherence. Analogously to the
surface area heuristic [Goldsmith and Salmon 1987], the surface
area of the convex hull of the ray set is approximately proportional
to the probability of the ray subset intersecting different bounding
volumes. Thus, the surface area of the convex hull will correspond to
the traversal footprint of a given ray set in the spatial data structure.

Due to the computational overhead and stability issues of eval-
uating the 3D convex hull, we propose to use a looser and sim-
pler bounding volume for a given ray set inspired by the previous
work [Roger et al. 2007; Szécsi 2006]. Our ray coherence measure
uses a surface area of a fitted capsule. The capsule consists of a
union of two hemispheres and a conical section between them (see
Figures 1 and 3). Its parameters are computed as follows: we first
determine the axis of the cone by computing the centroid of origins
and termination points. Then we compute the average distance
of the origins and termination points from this axis and use these
values as radii of the corresponding hemispheres as well as the
conical section between them.

The coherence of the whole ray set is evaluated by computing
the average measure of ray subsets of n consecutive rays. We used
n = 64 in our measurements, as our tests indicate that the RTX
trace kernels processes groups of 64 rays in parallel. We denote the
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Figure 3: The coherent subsets of consecutive rays for the 6th bounce in the wavefront path tracer as a result of ray reordering
using our Two Point method: secondary rays reflected from a mirror surface (left) and shadow rays cast towards a large area
light (right).

0 1 2 3 4 5 6 7 8
Bounce [-]

500

1000

1500

2000

2500

3000

3500

Tr
ac

e 
Sp

ee
d 

[M
Ra

ys
/s

] Unsorted
Origin
Reis
Costa
Aila
Aila Compact
Octahedron
Two Point 0.25
Two Point Adaptive
Two Point Real

1 2 3 4 5 6 7 8 9
Bounce [-]

1500

2000

2500

3000

3500

4000

Tr
ac

e 
Sp

ee
d 

[M
Ra

ys
/s

] Unsorted
Origin
Reis
Costa
Aila
Aila Compact
Octahedron
Two Point 0.25
Two Point Adaptive
Two Point Real

Figure 4: The trace performance for the DirectX kernel on the Bistro scene for subsequent bounces. Primary and secondary
rays (left), shadow rays (right).

corresponding measure byM64
CPS and its mean value for the whole

ray set byM
64
CPS .

We evaluated the correlation of the proposed coherence mea-
sures with trace times for various scenes, reordering methods, and
path tracing bounces. To reduce the influence of scene dependency,
we used relative coherent measures and relative trace times, i.e.
both quantities are normalized by the measures and trace times for
the unsorted rays for each measured trace kernel call.

The overall correlation for all measured scenes and methods is
shown in Figure 7 on the left. The correlation for one selected scene
(Bistro) is shown in Figure 7 on the right. We can observe weak
to moderate overall correlation of M64

CPS with trace times and a
slightly stronger correlation for the single scene case. The Pearson
correlation coefficient was between 0.59 and 0.81 for secondary
rays and 0.82 and 0.95 for shadow rays. For the secondary rays,
the lowest correlations appeared in the Salle de Bain scene, for the
shadow rays in the Resort scene. The overall correlation coefficient
(for all scenes and methods put together) is 0.73 for secondary rays
and 0.82 for shadow rays.

4.4 Discussion and Limitations
4.4.1 Reordering Overhead. Although significant trace speedups
were achieved, the measurements indicate, that in general ray re-
ordering does not pay off overall due to the disproportion between
the very fast trace kernel and comparatively slow ray index sorting
and ray data reordering. The overhead of sorting is shown in Table 2.
We can see that the most time-consuming step is the actual ray
data reordering, which uses incoherent memory access to create
coherent ray buffers. Reducing this overhead would be a key to
provide a practical benefit of reordering for the trace phase for the
medium size scenes that we tested. With increasing scene com-
plexity, the reordering overhead becomes marginal in comparison
with trace time as trace time increases, yet the reordering overhead
remains constant. We assume that for rendering very large scenes
with complex detailed geometry, the relative overhead of reorder-
ing should be possible to recover even when combined with the
fast RTX platform.

In our previous CUDA implementation, we avoided reordering
by modifying the trace kernel to use indirect ray access with sorted
ray index buffer. We achieved overall speedup for all tested scenes
thanks to the low overhead of the indirect access and relatively
slower trace kernel. For DirectX and OptiX implementation, we
tried a similar approach using ray generation shaders, but then
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Figure 5: Trace performance for DirectX (top) and OptiX (bottom) kernels using sorting codes of different bit lengths on the
Breakfast scene. The left column shows the trace speed for secondary rays processed using nearest-hit kernel, and the right
column shows shadow rays processed using any-hit kernel.
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Figure 6: Control flow and cache efficiency of unsorted and sorted secondary rays (left) and shadow rays (right) for up to 8
bounces with the CUDA trace kernel in the Salle de Bain scene.

the trace speed was practically the same as for the unsorted rays.
Further analysis of this behavior is an interesting topic for future
work.

4.4.2 Ray Coherence Measure. There are several issues that pre-
vent achieving higher correlation of the proposed ray coherence
measure with the trace times. First, since the measure does not
explicitly consider ray direction, it might underestimate traversal
divergence, e.g. in the case of rays with opposite directions. Second,
for less dense ray distributions, the rays sample a volume defined by
the convex hull sparsely, and therefore the convex hull (or any other
bounding volume) is a too conservative estimate of the traversed
volume. Third, defining the measure as a mean over fixed-size ray
subsets does not suffice, as many ray subsets are being processed

by the trace kernel. The total trace time will include non-trivial
dependencies defined by the thread scheduling process and cache
utility, which are not explicitly modeled by the current measure.
Thus, finding a better coherence measure is an interesting research
topic that might also reveal novel ray reordering algorithms.

4.4.3 Influence on Shading Performance. When performing ray
reordering, the shader execution is more coherent, but the memory
writes to the framebuffer are incoherent. Overall, the ray reordering
causes higher shading times since all our test scenes have very sim-
ple materials. Similarly to the reordering overhead discussion above,
we believe that for rendering scenes with more complex materials,
the framebuffer scattered write overhead becomes insignificant in
comparison with the benefit of coherent material accesses.
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Figure 7: Scatter plot of the correlation between relative coherence measure M
64
CPS and relative trace times. Both values are

taken w.r.t. the Unsorted method: All scenes (left) and only the Bistro scene (right).

Table 2: Breakdown of times for different phases of ray re-
ordering, trace time and speed (secondary / shadow) for the
Bistro scene. We use two different sorting strategies: global
sorting (device-wise) and local sorting (block-wise) utilizing
specialized kernels of the CUB library. The times were mea-
sured using the Two Point Adaptive method in OptiX.

block size 1024 2048 4096 device-wise
code time [ms] 0.34 0.34 0.34 0.33
sort time [ms] 0.18 0.21 0.27 0.62
reorder time [ms] 0.47 0.54 0.55 2.26
accum. time [ms] 0.43 0.42 0.42 0.45
total overhead [ms] 1.43 1.50 1.59 3.66
trace time [ms] 2.24 / 1.55 2.16 / 1.57 2.04 / 1.51 1.17 / 0.87
trace speedup 1.03 / 1.05 1.04 / 1.05 1.12 / 1.11 1.85 / 1.82

5 CONCLUSION AND FUTUREWORK
We summarized existing ray reordering techniques suitable for
GPU ray tracing that are agnostic to the spatial data structure or
trace kernel. We formulated a coherence measure that evaluates
ray coherence using the surface area of the corresponding spatial
volume. Motivated by minimizing ray incoherence, we proposed
a novel method for reordering rays using estimated termination
points.

We evaluated nine different ray reordering methods within Di-
rectX and OptiX driven by the RTX technology on seven test scenes.
We achieved 1.4 − 2.0× trace speedup for DirectX and 1.3 − 1.9×
trace speedup for OptiX. The proposed Two Point ray reordering
method performed the best for highly incoherent secondary rays.
For shadow rays, other techniques such as the method proposed
by Aila and Karras [2010] or the Octahedron method [Meyer et al.
2010] work better. Overall, the results indicate a great potential of
ray reordering as a preprocessing step prior to the trace phase. Due
to comparatively high overhead of ray reordering phase w.r.t. RTX
accelerated trace kernels, we were not able to recover the sorting
overhead even while using the state-of-the-art implementation of
the sorting algorithm.

There is a number of possible directions for future work. The
current discrepancy of the results between secondary and shadow
rays indicates the potential for defining other coherence measures,

e.g. to put more weight on the proximity of ray origins. This could
be then directly reflected in the design of improved ray reordering
techniques. Another possibility is to decide on reordering strategy
using a quick analysis of the input ray set. It is also possible to use
other algorithms such as fast hierarchical clustering to reorder the
input rays. An orthogonal research direction is to accelerate ray
reordering by designing hardware sorting units, which might also
be beneficial for the construction of underlying spatial acceleration
structures based on sorting along a space-filling curve.
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